Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0051924, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345125

RESUMEN

Tibetan animals have several unique advantages owing to the harsh ecological conditions under which they live. However, compared to Tibetan mammals, understanding of the advantages and underlying mechanisms of the representative high-latitude bird, the Tibetan chicken (Gallus gallus, TC), remains limited. The gut microbiota of animals has been conclusively shown to be closely related to both host health and host environmental adaptation. This study aimed to explore the relationships between the cecal microbiome and the advantages of TCs based on comparisons among three populations: native TCs residing on the plateau, domestic TCs living in the plain, and one native plain species. Metatranscriptomic sequencing revealed a significant enrichment of active Bacteroidetes but a loss of active Firmicutes in native TCs. Additionally, the upregulated expression of genes in the cecal microbiome of native TCs showed enriched pathways related to energy metabolism, glycan metabolism, and the immune response. Furthermore, the expression of genes involved in the biosynthesis of short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) was upregulated in the cecal microbiome of native TCs. Data from targeted metabolomics further confirmed elevated levels of certain SCFAs and SBAs in the cecum of native TCs. Based on the multi-omics association analysis, we proposed that the higher ratio of active Bacteroidetes/Firmicutes may be attributed to the efficient energy metabolism and stronger immunological activity of native TCs. Our findings provide a better understanding of the interactions between gut microbiota and highland adaptation, and novel insights into the mechanisms by which Tibetan chickens adapt to the plateau hypoxic environment. IMPORTANCE: The composition and function of the active cecal microbiome were significantly different between the plateau Tibetan chicken population and the plain chicken population. Higher expression genes related to energy metabolism and immune response were found in the cecal microbiome of the plateau Tibetan chicken population. The cecal microbiome in the plateau Tibetan chicken population exhibited higher biosynthesis of short-chain fatty and secondary bile acids, resulting in higher cecal content of these metabolites. The active Bacteroidetes/Firmicutes ratio in the cecal microbiome may contribute to the high-altitude adaptive advantage of the plateau Tibetan chicken population.

2.
J Am Chem Soc ; 146(32): 22180-22192, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087925

RESUMEN

Metal nanoclusters (NCs) hold great promise for expressing multipeak emission based on their well-defined total structure with diverse luminescent centers. Herein, we report the surface motif-dictated triple phosphorescence of Au NCs with dynamic color turning. The deprotonation-triggered isomerization of terminal thiouracils can evolve into a mutual transformation among their hierarchical motifs, thus serving a multipeak-emission expression with good tailoring. More importantly, the underlying electron transfer is thoroughly identified by excluding the radiative and nonradiative energy transfer, where electrons flow from the first phosphorescent state to the last two ones. The findings shed light on finely tailing motifs at the molecular level to motivate studies on customizable luminescence characteristics of metal NCs.

3.
Anim Biotechnol ; 35(1): 2390940, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39137276

RESUMEN

Blood composition is indicative of health-related traits such as immunity and metabolism. The use of molecular genetics to investigate alterations in these attributes in laying ducks is a novel approach. Our objective was to employ genome - wide association studies (GWAS) and haplotype - sharing analysis to identify genomic regions and potential genes associated with 11 blood components in Shaoxing ducks. Our findings revealed 35 SNPs and 1 SNP associated with low-density lipoprotein cholesterol (LDL) and globulin (GLB), respectively. We identified 36 putative candidate genes for the LDL trait in close proximity to major QTLs and key loci. Based on their biochemical and physiological properties, TRA2A, NPY, ARHGEF26, DHX36, and AADAC are the strongest putative candidate genes. Through linkage disequilibrium analysis and haplotype sharing analysis, we identified three haplotypes and one haplotype, respectively, that were significantly linked with LDL and GLB. These haplotypes could be selected as potential candidate haplotypes for molecular breeding of Shaoxing ducks. Additionally, we utilized a bootstrap test to verify the reliability of GWAS with small experimental samples. The test can be accessed at https://github.com/xuwenwu24/Bootstrap-test.


Asunto(s)
Patos , Estudio de Asociación del Genoma Completo , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Patos/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética , Desequilibrio de Ligamiento , Femenino , LDL-Colesterol/sangre , LDL-Colesterol/genética
4.
Poult Sci ; 103(9): 103976, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024692

RESUMEN

Pekin ducks and Shaoxing ducks are 2 Chinese local duck breeds, both domesticated from mallard, but after domestication and long-term artificial selection, the body weight of Pekin ducks is significantly higher than that of Shaoxing ducks. It is no debate that genetic factors are the main factors responsible for this difference, but whether intestinal microbiota contribute to this difference is yet unknown. Thus, we performed comparative intestinal metagenomics and metabolomics analysis between Pekin ducks and Shaoxing ducks. We found obvious differentiation of intestinal metagenome and metabolome between the 2 breeds. Four cecal microbial genera, including Fusobacterium, Methanobrevibacter, Butyricicoccus, and Anaerotignum showed higher abundance in Pekin ducks. Among them, Methanobrevibacter and Butyricicoccus may positively correlate with fat deposition and body weight. A total of 310 metabolites showed difference between the 2 breeds. Functions of these differential metabolites were mainly enriched in amino acid metabolism, including energy metabolism-related histidine metabolism. Integrated omics analysis showed that microbial changes were closely related to altered metabolites. Especially, Butyricicoccus showing higher abundance in Pekin ducks was significantly negatively correlated with D-glucosamine-6-phosphate, which has been reported to prevent body weight gains. These findings may contribute to further understand the difference in body weight between Pekin ducks and Shaoxing ducks.


Asunto(s)
Patos , Microbioma Gastrointestinal , Animales , Metaboloma , Metabolómica , Metagenoma , Metagenómica , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
5.
Sci Total Environ ; 947: 174734, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002589

RESUMEN

The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.


Asunto(s)
Pollos , Farmacorresistencia Microbiana , Heces , Microbiota , Microbiología del Suelo , Animales , Heces/microbiología , Pollos/microbiología , Porcinos , Humanos , Microbiota/efectos de los fármacos , Farmacorresistencia Microbiana/genética , China , Antibacterianos/farmacología , Metagenómica , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Bacteriana/genética
6.
Chem Commun (Camb) ; 60(49): 6324-6327, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38826149

RESUMEN

A method integrating machine learning with first-principles calculations is employed to forecast the formation energy of delafossite crystals, facilitating the rapid identification of stable crystals. This approach identifies several stable candidates and highlights the importance of atomic ionization energy and electron affinity in the formation of delafossite crystals.

7.
Antioxidants (Basel) ; 13(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38790716

RESUMEN

Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.

8.
Nanoscale ; 16(20): 9853-9860, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712569

RESUMEN

Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.

9.
Front Genet ; 15: 1334781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784041

RESUMEN

Background: Psoriasis is a chronic systemic inflammatory disease, and hyperuricemia is a common comorbidity in patients with psoriasis. However, the exact relationship between uric acid levels and psoriasis remains unclear. This study aimed to explore the association between uric acid levels and psoriasis. Methods: Observational study participant data (≥16 years, n = 23,489) from NHANES 2003-2014. We conducted analyses using a weighted multiple logistic regression model. Genetic data sets for uric acid levels and psoriasis were obtained from the IEU database. We selected genetically independent loci closely associated with serum uric acid levels as instrumental variables and performed Mendelian randomization analyses using five complementary methods: inverse variance weighting (IVW), MR-Egger, weighted median, simple mode, and weighted mode. Results: After adjusting for other covariates, the results revealed no significant association between serum uric acid levels and psoriasis (b = 0.999, 95% CI: 0.998, 1.001, p = 0.275). Subgroup analyses stratified by gender and ethnicity showed no significant association between sUA and psoriasis in any of the subgroups. Furthermore, the MR analysis involved the selection of 227 SNPs that were associated with both sUA and psoriasis. IVW results demonstrated no causal relationship between sUA and psoriasis (OR = 0.282, 95% CI: -0.094-0.657, p = 0.142). Conclusion: Our study suggests that uric acid levels are not significantly causally related to psoriasis. This finding provides valuable insights for the treatment and prevention of psoriasis, indicating that merely reducing uric acid levels may not be an effective strategy to reduce the risk of psoriasis onset.

10.
Ecotoxicol Environ Saf ; 278: 116430, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718729

RESUMEN

Copper (Cu) serves as an essential cofactor in all organisms, yet excessive Cu exposure is widely recognized for its role in inducing liver inflammation. However, the precise mechanism by which Cu triggers liver inflammation in ducks, particularly in relation to the interplay in gut microbiota regulation, has remained elusive. In this investigation, we sought to elucidate the impact of Cu exposure on liver inflammation through gut-liver axis in ducks. Our findings revealed that Cu exposure markedly elevated liver AST and ALT levels and induced liver inflammation through upregulating pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and triggering the LPS/TLR4/NF-κB signaling pathway. Simultaneously, Cu exposure induced alterations in the composition of intestinal flora communities, notably increasing the relative abundance of Sphingobacterium, Campylobacter, Acinetobacter and reducing the relative abundance of Lactobacillus. Cu exposure significantly decreased the protein expression related to intestinal barrier (Occludin, Claudin-1 and ZO-1) and promoted the secretion of intestinal pro-inflammatory cytokines. Furthermore, correlation analysis was observed that intestinal microbiome and gut barrier induced by Cu were closely related to liver inflammation. Fecal microbiota transplantation (FMT) experiments further demonstrated the microbiota-depleted ducks transplanting fecal samples from Cu-exposed ducks disturbed the intestinal dysfunction, which lead to impaire liver function and activate the liver inflammation. Our study provided insights into the mechanism by which Cu exposure induced liver inflammation in ducks through the regulation of gut-liver axis. These results enhanced our comprehension of the potential mechanisms driving Cu-induced hepatotoxicity in avian species.


Asunto(s)
Cobre , Patos , Microbioma Gastrointestinal , Lipopolisacáridos , Hígado , Transducción de Señal , Receptor Toll-Like 4 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Lipopolisacáridos/toxicidad , Cobre/toxicidad , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
11.
J Phys Chem Lett ; 15(22): 5868-5874, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804522

RESUMEN

Understanding the structures of oxygen vacancies in bulk ceria is crucial as they significantly impact the material's catalytic and electronic properties. The complex interaction between oxygen vacancies and Ce3+ ions presents challenges in characterizing ceria's defect chemistry. We introduced a machine learning-assisted cluster-expansion model to predict the energetics of defective configurations accurately within bulk ceria. This model effectively samples configurational spaces, detailing oxygen vacancy structures across different temperatures and concentrations. At lower temperatures, vacancies tend to cluster, mediated by Ce3+ ions and electrostatic repulsion, while at higher temperatures, they distribute uniformly due to configurational entropy. Our analysis also reveals a correlation between thermodynamic stability and the band gap between occupied O 2p and unoccupied Ce 4f orbitals, with wider band gaps indicating higher stability. This work enhances our understanding of defect chemistry in oxide materials and lays the groundwork for further research into how these structural properties affect ceria's performance.

12.
Front Microbiol ; 15: 1368736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650870

RESUMEN

Introduction: This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods: In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results: Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion: These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.

13.
Environ Sci Pollut Res Int ; 31(19): 28754-28763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558345

RESUMEN

Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.


Asunto(s)
Herbicidas , Toxinas Marinas , Microcystis , Oxazoles , Microcystis/efectos de los fármacos , Herbicidas/toxicidad , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Propionatos , Expresión Génica/efectos de los fármacos , Microcistinas
14.
Poult Sci ; 103(6): 103726, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636203

RESUMEN

Residual feed intake (RFI) is a crucial parameter for assessing the feeding efficiency of poultry. Minimizing RFI can enhance feed utilization and reduce costs. In this study, 315 healthy female ducks were individually housed in cages. Growth performance was monitored during the high laying period, from 290 to 325 d of age. The cecal transcriptome and microbiome of 12 ducks with high RFI and 12 with low residual feed intake (LRFI) were analyzed. Regarding growth performance, the LRFI group exhibited significantly lower RFI, feed conversion ratio (FCR), and feed intake (Fi) compared to the HRFI group (p < 0.01). However, there were no significant differences observed in body weight (BW), body weight gain (BWG), and egg mass (EML) between the groups (p > 0.05). Microbiome analysis demonstrated that RFI impacted gut microbial abundance, particularly affecting metabolism and disease-related microorganisms such as Romboutsia, Enterococcus, and Megamonas funiformis. Transcriptome analysis revealed that varying RFI changed the expression of genes related to glucose metabolism and lipid metabolism, including APOA1, G6PC1, PCK1, and PLIN1. The integrated analysis indicated that host genes were closely linked to the microbiota and primarily function in lipid metabolism, which may enhance feeding efficiency by influencing metabolism and maintaining gut homeostasis.


Asunto(s)
Patos , Microbioma Gastrointestinal , Transcriptoma , Animales , Patos/fisiología , Patos/microbiología , Patos/genética , Femenino , Alimentación Animal/análisis , Ingestión de Alimentos , Ciego/microbiología , Perfilación de la Expresión Génica/veterinaria
15.
Proc Natl Acad Sci U S A ; 121(15): e2315730121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557188

RESUMEN

Microdroplets are a class of soft matter that has been extensively employed for chemical, biochemical, and industrial applications. However, fabricating microdroplets with largely controllable contact-area shape and apparent contact angle, a key prerequisite for their applications, is still a challenge. Here, by engineering a type of surface with homocentric closed-loop microwalls/microchannels, we can achieve facile size, shape, and contact-angle tunability of microdroplets on the textured surfaces by design. More importantly, this class of surface topologies (with universal genus value = 1) allows us to reveal that the conventional Gibbs equation (widely used for assessing the edge effect on the apparent contact angle of macrodroplets) seems no longer applicable for water microdroplets or nanodroplets (evidenced by independent molecular dynamics simulations). Notably, for the flat surface with the intrinsic contact angle ~0°, we find that the critical contact angle on the microtextured counterparts (at edge angle 90°) can be as large as >130°, rather than 90° according to the Gibbs equation. Experiments show that the breakdown of the Gibbs equation occurs for microdroplets of different types of liquids including alcohol and hydrocarbon oils. Overall, the microtextured surface design and topological wetting states not only offer opportunities for diverse applications of microdroplets such as controllable chemical reactions and low-cost circuit fabrications but also provide testbeds for advancing the fundamental surface science of wetting beyond the Gibbs equation.

16.
Angew Chem Int Ed Engl ; 63(23): e202403645, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530138

RESUMEN

Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.

17.
PLoS One ; 19(3): e0298689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527040

RESUMEN

The field of orthopedics has long struggled with the challenge of repairing and regenerating bone defects, which involves a complex process of osteogenesis requiring coordinated interactions among different types of cells. The crucial role of endothelial cells and osteoblasts in bone vascularization and osteogenesis underscores the importance of their intimate interaction. However, efforts to bioengineer bone tissue have been impeded by the difficulty in establishing proper angiogenesis and osteogenesis in tissue structures. This study presents a novel approach to bone tissue engineering, involving a three-dimensional composite hydrogel scaffold composed of sodium alginate microspheres encapsulated in type I collagen. Using this scaffold, a three-dimensional indirect co-culture system was established for osteoblasts and endothelial cells to evaluate the osteogenic differentiation potential of osteoblasts. Results demonstrate that the non-contact co-culture system of endothelial cells and osteoblasts constructed by the composite hydrogel scaffold loaded with microspheres holds promise for bone tissue engineering. The innovative concept of an indirect co-culture system presents exciting prospects for conducting intercellular communication studies and offers a valuable in vitro tissue platform to investigate tissue regeneration.


Asunto(s)
Células Endoteliales , Osteogénesis , Técnicas de Cocultivo , Hidrogeles/farmacología , Biomimética , Osteoblastos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Diferenciación Celular , Proliferación Celular
18.
Poult Sci ; 103(4): 103530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417328

RESUMEN

In order to explore the difference and its underlying mechanism between young and older ducks, 60-day-old (D60) and 300-day-old (D300) of young ducks and 900-day-old ducks (D900) of older ducks were selected and studied. HE staining indicated that breast muscle fibers in the D900 group were more inseparable than D60 and D300 groups and the greater redness were showed in D300 and D900 groups. Quantitative proteomic analyses were conducted to further identify differences between young and older ducks that 61 proteins overlapped in the comparative analysis of the D900 vs. D60 and D900 vs. D300 groups. Furthermore, metabolomics analysis from the D900 group showed marked differences from the results of the D60 and D300 groups in 31 unique metabolites. In particular, lower guanosine, hypoxanthine, guanine, and doxefazepam levels indicated the increased nutritional value of older ducks. Integrated proteomics and metabolomics analysis showed that purine metabolism was specifically enriched, indicating that NME3, RRM2B, AMPD1, and AMPD3 might mainly affect meat from older ducks. In conclusion, our results indicated that meat from 900-day-old ducks possessed a unique biochemical signature that could provide candidate biomarkers to distinguish young ducks from older ducks.


Asunto(s)
Patos , Proteómica , Animales , Patos/metabolismo , Pollos , Proteínas/metabolismo , Carne/análisis
19.
Sci Rep ; 14(1): 434, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172158

RESUMEN

Despite many efforts, the outcomes obtained with field-assisted processing of materials still rely on long-term coupling with other electroless processes. This conceals the efficacy and the intrinsic contributions of electric current. A new device utilizing electrical nano pulsing (ENP) has been designed and constructed to bring quasi-instantaneous modifications to the micro- and nano-structure in materials. Featuring ultra-high intensity (~ 1011 A/m2) and ultra-short duration (< 1 µs), the ENP technology activates non-equilibrium structural evolutions at nanometer spatial scale and nanosecond temporal scale. Several examples are provided to demonstrate its utility far outpacing any conventional materials processing technology. The ENP technology gives a practical tool for exploring the intrinsic mechanism of electric-field effects and a pathway towards the rapid industrial manufacturing of materials with unique properties.

20.
Poult Sci ; 103(3): 103355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228061

RESUMEN

Feed costs account for approximately 60 to 70% of the cost of poultry farming, and feed utilization is closely related to the profitability of the poultry industry. To understand the causes of the differences in feeding in Shan Partridge ducks, we compared the hypothalamus transcriptome profiles of 2 groups of ducks using RNA-seq. The 2 groups were: 1) low-residual feed intake (LRFI) group with low feed intake but high feed efficiency, and 2) high-residual feed intake (HRFI) group with high feed intake but low feed efficiency. We found 78 DEGs were enriched in 9 differential Kyoto Encyclopedia of Genes and Genome (KEGG) pathways, including neuroactive ligand-receptor interaction, GABAergic synapse, nitrogen metabolism, cAMP signaling pathway, calcium signaling pathway, nitrogen metabolism, tyrosine metabolism, ovarian steroidogenesis, and gluconeogenesis. To further identify core genes among the 78 DEGs, we performed protein-protein interaction and coexpression network analyses. After comprehensive analysis and experimental validation, 4 core genes, namely, glucagon (GCG), cholecystokinin (CCK), gamma-aminobutyric acid type A receptor subunit delta (GABRD), and gamma-aminobutyric acid type A receptor subunit beta1 (GABRB1), were identified as potential core genes responsible for the difference in residual feeding intake between the 2 breeds. We also investigated the level of cholecystokinin (CCK), neuropeptide Y (NPY), peptide YY (PYY), ghrelin, and glucagon-like peptide1 (GLP-1) hormones in the sera of Shan Partridge ducks at different feeding levels and found that there was a difference between the 2 groups with respect to GLP-1 and NPY levels. The findings will serve as a reference for future research on the feeding efficiency of Shan Partridge ducks and assist in promoting their genetic breeding.


Asunto(s)
Patos , Galliformes , Animales , Patos/genética , Glucagón , Transcriptoma , Pollos , Colecistoquinina , Ingestión de Alimentos , Ácido gamma-Aminobutírico , Nitrógeno , Péptido 1 Similar al Glucagón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA