Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Acta Pharm Sin B ; 14(3): 1457-1466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487010

RESUMEN

Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 µmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.

2.
Front Pharmacol ; 15: 1298061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327987

RESUMEN

Background: Schizophrenia is a serious psychiatric disorder that significantly affects the quality of life of patients. The objective of this study is to discover a novel antipsychotic candidate with highly antagonistic activity against both serotonin and dopamine receptors, demonstrating robust efficacy in animal models of positive, negative, and cognitive symptoms of schizophrenia. Methods: In the present study, we examined the activity of antipsychotic drug (NH300094) on 5-HT2A, 5-HT2C, 5-HT1A, 5-HT1B, 5-HT7, H1, M1, Alpha1A, D2L, D2S, Alpha2A, D3 receptor functional assay in vitro. In addition, multiple animal models, including dizocilpine (MK-801) induced hyper-locomotion; APO induced climbing; Conditioned Avoidance Response (CAR); DOI-Induced Head Twitch; Forced swimming test; Scopolamine induced cognitive impairment model, were used to verify the antipsychotic activity of NH300094 in preclinical. Results: In vitro functional assays have indicated that NH300094 is a potent antagonist of 5-HT receptors and dopamine receptors, with higher relative antagonistic activity against 5-HT2A receptor (5-HT2A IC50 = 0.47 nM) than dopamine receptors (D2L IC50 = 1.04 nM; D2S IC50 = 11.71 nM; D3 IC50 = 31.55 nM). Preclinical in vivo pharmacological study results showed that NH300094 was effective in multiple models, which is more extensive than the clinic drug Risperidone. Furthermore, the safety window for extrapyramidal side effects of NH300094 is significantly wider than that of Risperidone (For NH300094, mice catalepsy model ED50/ Mice MK-801 model ED50 = 104.6-fold; for Risperidone, mice catalepsy model ED50/ Mice MK-801 model ED50 = 12.9-fold), which suggests a potentially better clinical safety profile for NH300094. Conclusion: NH300094 is a novel potent serotonin and dopamine receptors modulator, which has good safety profile and therapeutic potential for the treatment of schizophrenia with cognition disorders.

3.
Curr Med Chem ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38299395

RESUMEN

BACKGROUND: Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied. METHOD: A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis. RESULTS: DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD. CONCLUSION: High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients.

4.
Brain Behav Immun ; 115: 64-79, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793489

RESUMEN

CD38 is involved in immune responses, cell proliferation, and has been identified in the brain, where it is implicated in inflammation processes and psychiatric disorders. We hypothesized that dysfunctional CD38 activity in the brain may contribute to the pathogenesis of depression. To investigate the underlying mechanisms, we used a lipopolysaccharide (LPS)-induced depression-like model and conducted behavioral tests, molecular and morphological methods, along with optogenetic techniques. We microinjected adeno-associated virus into the hippocampal CA3 region with stereotaxic instrumentation. Our results showed a marked increase in CD38 expression in both the hippocampus and cortex of LPS-treated mice. Additionally, pharmacological inhibition and genetic knockout of CD38 effectively alleviated neuroinflammation, microglia activation, synaptic defects, and Sirt1/STAT3 signaling, subsequently improving depression-like behaviors. Moreover, optogenetic activation of glutamatergic neurons of hippocampal CA3 reduced the susceptibility of mice to depression-like behaviors, accompanied by reduced CD38 expression. We also found that (R)-ketamine, which displayed antidepressant effects, was linked to its anti-inflammatory properties by suppressing increased CD38 expression and reversing synaptic defects. In conclusion, hippocampal CD38 is closely linked to depression-like behaviors in an inflammation model, highlighting its potential as a therapeutic target for antidepressant development.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Depresión , Ketamina , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Depresión/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Ketamina/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo
5.
Acta Pharm Sin B ; 13(11): 4553-4577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969740

RESUMEN

Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-ß-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.

6.
Postgrad Med J ; 100(1179): 20-27, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37827532

RESUMEN

PURPOSE: To assess the regional epidemiological trends of kidney diseases over time in the South China using renal biopsy-proven cases. METHODS: This retrospective observational cohort study was conducted at the Institute of Nephrology, Second Xiangya Hospital of Central South University, and encompasses all patients diagnosed with kidney disease via biopsy from 2012 to 2021. RESULTS: The study sample consisted of 10 199 native kidneys, with a male-to-female ratio of 0.91:1 and an average age of 38.74 (±14.53) years. Primary glomerular nephropathy, systemic glomerular nephropathy (SGN), tubulointerstitial disease, and hereditary renal diseases accounted for 66.92 (6825)%, 24.49 (2498)%, 8.06 (822)%, and 0.53 (54)%, respectively. The leading pathologies of primary glomerular nephropathy remained the IgA nephropathy. The frequencies of IgA nephropathy and membranous nephropathy increased significantly, whereas the frequencies of minimal change disease and focal segmental glomerulosclerosis decreased (P < .001) between 2017 and 2021 than in the years 2012 and 2016. An earlier onset of membranous nephropathy was observed in the age group of 45-59 years compared to previous studies. The leading pathologies of SGN were found to be lupus nephritis (758 cases, 30.45%) and hypertension nephropathy (527 cases, 21.17%). The frequencies of hypertension nephropathy and diabetic nephropathy increased between 2017 and 2021 compared to 2012 and 2016 (P < .001), gradually becoming the leading pathological types of SGN. In elderly patients diagnosed with nephrotic syndrome, the frequencies of amyloidosis significantly increased (P < .01). CONCLUSION: Our study may provide insights for kidney disease prevention and public health strategies. What is already known on this topic The pathological spectrum of kidney diseases has undergone significant transformations in the past decade, driven by the escalating incidence of chronic diseases. Although there are studies exploring the renal biopsy findings from various regions in China which present both similarities and differences in epidemiology, few large-scale reports from the South China in recent decades were published. What this study adds Our findings reveal the following key observations: (i) increased proportion of middle-aged patients leading to the increasing average age at the time of biopsy;(ii) the frequencies of IgA nephropathy and membranous nephropathy (MN) increased significantly, whereas the frequencies of minimal change disease and focal segmental glomerulosclerosis decreased (P < .001) between 2017 and 2021 than in the years 2012 and 2016; (iii) earlier onset of MN in the age group of 45-59 years old was found in our study; and (iv) a higher frequency of hypertension nephropathy and DN presented over time, and frequency of amyloidosis increased in elderly patients diagnosed with NS. How this study might affect research, practice, or policy This single-center yet a large-scale study of the kidney disease spectrum in South China may provide a reference point for the diagnosis, treatment, and prevention of chronic kidney disease.


Asunto(s)
Amiloidosis , Glomerulonefritis por IGA , Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Hipertensión Renal , Enfermedades Renales , Nefrosis Lipoidea , Persona de Mediana Edad , Anciano , Humanos , Masculino , Femenino , Adulto , Lactante , Glomerulonefritis Membranosa/epidemiología , Glomerulonefritis Membranosa/patología , Glomerulonefritis por IGA/epidemiología , Glomeruloesclerosis Focal y Segmentaria/epidemiología , Nefrosis Lipoidea/epidemiología , Estudios Retrospectivos , Enfermedades Renales/epidemiología , Biopsia , China/epidemiología
7.
Mol Psychiatry ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848708

RESUMEN

Ketamine exhibits rapid and sustained antidepressant effects. As decreased myelination has been linked to depression pathology, changes in myelination may be a pivotal mechanism underlying ketamine's long-lasting antidepressant effects. Although ketamine has a long-lasting facilitating effect on myelination, the precise roles of myelination in ketamine's sustained antidepressant effects remain unknown. In this study, we employed spatial transcriptomics (ST) to examine ketamine's lasting effects in the medial prefrontal cortex (mPFC) and hippocampus of mice subjected to chronic social defeat stress and identified several differentially expressed myelin-related genes. Ketamine's ability to restore impaired myelination in the brain by promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes was demonstrated. Moreover, we showed that inhibiting the expression of myelin-associated oligodendrocytic basic protein (Mobp) blocked ketamine's long-lasting antidepressant effects. We also illustrated that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) signaling mediated ketamine's facilitation on myelination. In addition, we found that the (R)-stereoisomer of ketamine showed stronger effects on myelination than (S)-ketamine, which may explain its longer-lasting antidepressant effects. These findings reveal novel mechanisms underlying the sustained antidepressant effects of ketamine and the differences in antidepressant effects between (R)-ketamine and (S)-ketamine, providing new insights into the role of myelination in antidepressant mechanisms.

8.
Biotechnol Genet Eng Rev ; : 1-16, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37013943

RESUMEN

To explore the mechanism of Tongmai Zhuke decoction for promoting blood circulation by taking carotid artery atherosclerosis (CAA) as an example, two sets of in-depth transcriptomic data as well as two sets of single-cell RNA sequencing data related to the macrophages in CAA were included. STAR and DCC software were used to process in-depth transcriptomic data in order to measure the expression level of LncRNAs as well as mRNA according to FPKM analysis. Single-cell RNA sequencing data from Illumina NovaSeq 6000 were further analyzed by CellRanger channel, CellRanger count, Seurat R package, DoubletFinder package, CCA algorithm, LogNormalize, principal-component analysis, t-SNE and ToppGene online tools. Based On unsupervised clustering, a total of four diverse cell populations with distinct transcriptional features were found in human carotid atherosclerotic plaques. The macrophages were further annotated as the "effector cell" in the pathologic process of CAA, based on the expression of CD68+/CD440-. A total of 84 up-regulated genes and 58 down-regulated linc-RNAs were identified in samples with carotid atherosclerotic plaques. Thereinto, lincRNA-Cox2 is the most down-regulated LincRNA. For the macrophages in carotid atherosclerotic plaques, expression level of Il6, Ccl3, Ccl4 Il10 and Tnfa were significantly up-regulated, while Timp1 significantly down-regulated comparing with healthy carotid sample. The expression level of lincRNA-Cox2 was significantly increased in macrophages after treated by Tongmai Zhuke decoction, while Cxcl10, Ccl3, Ccl4, Cxcl2, Ccl5, and Ccl19 were significantly decreased. Collectively, Tongmai Zhuke decoction could restrain the inflammatory reaction of macrophages for carotid artery atherosclerosis by up-regulating lincRNA-Cox2.

9.
Brain Res Bull ; 196: 20-33, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906042

RESUMEN

Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Calidad de Vida , Linfocitos T/patología , Accidente Cerebrovascular/patología , Isquemia Encefálica/complicaciones , Isquemia
10.
Front Mol Neurosci ; 15: 979483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277498

RESUMEN

Objective: Trigeminal neuralgia (TN), one of the most severe and debilitating chronic pain conditions, is often accompanied by mood disorders, such as anxiety and depression. Electroacupuncture (EA) is a characteristic therapy of Traditional Chinese Medicine with analgesic and anxiolytic effects. This study aimed to investigate whether EA ameliorates abnormal TN orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1. Materials and methods: A mouse infraorbital nerve transection model (pT-ION) of neuropathic pain was established, and EA or sham EA was used to treat ipsilateral acupuncture points (GV20-Baihui and ST7-Xiaguan). Golgi-Cox staining and transmission electron microscopy (TEM) were administrated to observe the changes of synaptic plasticity in the hippocampus CA1. Results: Stable and persistent orofacial allodynia and anxiety-like behaviors induced by pT-ION were related to changes in hippocampal synaptic plasticity. Golgi stainings showed a decrease in the density of dendritic spines, especially mushroom-type dendritic spines, in hippocampal CA1 neurons of pT-ION mice. TEM results showed that the density of synapses, membrane thickness of the postsynaptic density, and length of the synaptic active zone were decreased, whereas the width of the synaptic cleft was increased in pT-ION mice. EA attenuated pT-ION-induced orofacial allodynia and anxiety-like behaviors and effectively reversed the abnormal changes in dendritic spines and synapse of the hippocampal CA1 region. Conclusion: EA modulates synaptic plasticity of hippocampal CA1 neurons, thereby reducing abnormal orofacial pain and anxiety-like behavior. This provides evidence for a TN treatment strategy.

11.
Front Cell Neurosci ; 16: 981190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187288

RESUMEN

Trigeminal neuralgia (TN) is a peripheral nerve disorder often accompanied by abnormalities in mood. The lateral habenula (LHb) plays important roles in the modulation of pain and emotion. In the present study, we investigated the involvement of the LHb in the mechanisms underlying allodynia and anxiety induced by partial transection of the infraorbital nerve (pT-ION) in mice. Our results indicated that pT-ION induced persistent orofacial allodynia and anxiety-like behaviors, which were correlated with increased phosphorylation of N-Methyl D-aspartate receptor (NMDAR) subtype 2B (p-NR2B) and Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) in LHb neurons. Bilateral inhibition of NMDARs and CaMKII in the LHb attenuated the allodynia and anxiety-like behavior induced by pT-ION. Furthermore, bilateral activation of NMDARs in the LHb increased the expression of p-NR2B and p-CaMKII and induced orofacial allodynia and anxiety-like behaviors in naive mice. Adeno-associated virus (AAV)-mediated expression of hM3D(Gq) in CaMKII+ neurons of the bilateral LHb, followed by clozapine-N-oxide (CNO) administration, also triggered orofacial allodynia and anxiety-like behaviors in naïve mice with successful virus infection in LHb neurons (verified based on immunofluorescence). In conclusion, these findings suggest that activation of NMDA/CaMKII signaling in the LHb contributes to the occurrence and development of TN and related anxiety-like behaviors. Therefore, suppressing the activity of CaMKII+ neurons in the bilateral LHb by targeting NMDA/CaMKII may represent a novel strategy for treating pain and anxiety associated with TN.

12.
Neuropharmacology ; 220: 109272, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170927

RESUMEN

The discovery of the robust antidepressant actions of ketamine is regarded as one of the greatest advancements in depression treatment in the past 60 years. Recent findings have provided strong evidence for the presence of bidirectional communication networks between the gastrointestinal tract and the brain in depression. Moreover, increasing evidence supports the antidepressant role of ketamine in regulating the gut microbiome and microbiota-derived molecules; however, the mechanisms underpinning such effects are still ambiguous. This review summarizes the current understanding of the anti-depressant mechanisms of ketamine and its metabolites regarding the bidirectional regulation by microbiota-gut-brain axis. We review the relationship between gut microbiota and the antidepressant mechanisms of ketamine, and discuss the role of stress response, brain-derived neurotrophic factor (BDNF)-mediated neurogenesis, anti-inflammatory effect and neurotransmitters.


Asunto(s)
Microbioma Gastrointestinal , Ketamina , Antiinflamatorios/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico
13.
Front Pharmacol ; 13: 968124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091747

RESUMEN

Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.

14.
Neuropharmacology ; 218: 109207, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948160

RESUMEN

Anesthetic ketamine is a racemic mixture containing equal amount of (R)-ketamine and (S)-ketamine. Increasing preclinical data show that (R)-ketamine has a rapid-onset and sustained antidepressant without significant side effects. There are currently many studies on (R)-ketamine, however, the quantity and quality of these studies are unknown. Therefore, we conducted a bibliometric analysis of research on (R)-ketamine from January 2002 to December 2021. We obtained the publications on (R)-ketamine from the Web of Science database during the period. A variety of bibliographic elements were collected, including annual publications, authors, countries/regions, institutions, journals, and keywords. A total of 922 publications were included in this study. Professor Kenji Hashimoto of Chiba University in Japan was the most productively influential author in the field of (R)-ketamine and the authors from United States were the leader in this field. In addition, we found that the antidepressant effect of (R)-ketamine has been a hotspot in very recent years. This study provided a comprehensive analysis of research on (R)-ketamine and highlighted the growing interest in (R)-ketamine and its antidepressant effects.


Asunto(s)
Ketamina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Bibliometría , Humanos , Ketamina/farmacología , Estados Unidos
15.
Med Sci Monit ; 28: e934975, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35058421

RESUMEN

BACKGROUND This study aimed to investigate frontoparietal network (FPN) dysfunction in participants with migraine without aura (MwoA). MATERIAL AND METHODS We selected 48 age-, sex-, and education level-matched graduate students (24 participants with MwoA [MwoA group] and 24 healthy controls). RS-fMRI and independent component analysis were used to examine the FPN and to compare abnormal encephalic regional homogeneity values. The Mindful Attention Awareness Scale (MAAS), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and Self-Rating Scale of Sleep (SRSS) were used to evaluate attention, anxiety, depression, and sleep, respectively. Pearson's correlation was applied to evaluate the association between abnormal brain areas and the scores for each scale. RESULTS Neural function activity in encephalic regions of FPN showed abnormal changes in the MwoA group. The MwoA group had significantly lower MAAS scores (P<0.001), higher SAS scores (P<0.001), and higher SDS (P=0.06) and SRSS scores (P=0.26). In the MwoA group, functional activity of the right parietal lobule in the left FPN was positively correlated with MAAS scores (P=0.01) and negatively correlated with SAS (P=0.02). The orbital part of left inferior frontal gyrus activity in the right FPN was positively correlated with SDS (P=0.04) and SRSS (P<0.001). Right superior marginal gyrus activity in the right FPN was positively correlated with SDS (P=0.02). CONCLUSIONS Abnormal FPN function was correlated with attention, anxiety, depression, and sleep status in the MwoA group. These results offer further insights into the evaluation and treatment of MwoA.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Migraña sin Aura/fisiopatología , Adulto , Femenino , Humanos , Masculino , Migraña sin Aura/diagnóstico por imagen , Adulto Joven
16.
Front Cell Neurosci ; 15: 699731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658790

RESUMEN

Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.

17.
Hum Pathol ; 118: 49-59, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34592241

RESUMEN

A crescentic lesion in renal biopsy could be segmental or circumferential, but the distribution and clinical implication of the circumferential crescents in immunoglobulin A nephropathy (IgAN) remains unknown. A total of 384 crescentic IgAN patients between 2011 and 2019 were included. The subjects were classified as the circumferential crescent who have at least one crescent involving ≥50% circumference of Bowman's capsule, otherwise as to the segmental crescent. Clinical, pathological, and prognostic relationships were analyzed. The primary endpoint was a 30% decline in eGFR, and the secondary endpoint was more than 3.5 g/d proteinuria during follow-up. Of the 384 patients, 72 (18.8%) patients had more than one circumferential crescent. 52 (17.6%) Oxford C1 patients have circumferential crescent. During a mean follow-up of 32.3 months, both the primary and secondary endpoints have occurred more in the circumferential crescent patients. Kaplan-Meier analysis showed the patient with the circumferential crescent had significantly lower renal survival than those without. In multivariable Cox analyses, having the circumferential crescents in at least one-fifth of glomeruli was independently associated with primary endpoint (hazard ratio:3.60, 95% CI:1.46-8.83), after adjusting for Oxford-score, eGFR, systolic blood pressure, and proteinuria. Furthermore, those patients who scored C1 in Oxford and presenting with circumferential crescents, had better renal survival if they received the other immunosuppressants therapy. The circumferential crescents lesion was associated with adverse outcomes in IgAN, and more than one-fifth of glomeruli circumferential crescents is an independent predictor of 30% eGFR decline after adjusting for clinical and histological parameters.


Asunto(s)
Glomerulonefritis por IGA/patología , Adolescente , Adulto , Anciano , Pueblo Asiatico , Femenino , Humanos , Glomérulos Renales/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Adulto Joven
18.
J Pharmacol Exp Ther ; 379(3): 324-330, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34521699

RESUMEN

Etomidate is a potent and rapidly acting anesthetic with high therapeutic index (TI) and superior hemodynamic stability. However, side effect of suppressing adrenocortical function limits its clinical use. To overcome this side effect, we designed a novel etomidate analog, EL-0052, aiming to retain beneficial properties of etomidate and avoid its disadvantage of suppressing adrenocortical steroid synthesis. Results exhibited that EL-0052 enhanced GABAA receptors currents with a concentration for EC50 of 0.98 ± 0.02 µM, which was about three times more potent than etomidate (3.07 ± 1.67 µM). Similar to hypnotic potency of etomidate, EL-0052 exhibited loss of righting reflex with ED50s of 1.02 (0.93-1.20) mg/kg in rats and 0.5 (0.45-0.56) mg/kg in dogs. The TI of EL-0052 in rats was 28, which was higher than 22 of etomidate. There was no significant difference in hypnotic onset time, recovery time, and walking time between EL-0052 and etomidate in rats. Both of them had minor effects on mean arterial pressure in dogs. EL-0052 had no significant effect on adrenocortical function in dogs even at a high dose (4.3 × ED50), whereas etomidate significantly inhibited corticosteroid secretion. The inhibition of cortisol synthesis assay showed that EL-0052 had a weak inhibition on cortisol biosynthesis in human H259 cells with an IC50 of 1050 ± 100 nM, which was 2.09 ± 0.27 nM for etomidate. EL-0052 retains the favorable properties of etomidate, including potent hypnotic effect, rapid onset and recovery, stable hemodynamics, and high therapeutic index without suppression of adrenocortical function. SIGNIFICANCE STATEMENT: The novel etomidate analog EL-0052 retains the favorable properties of etomidate without suppressing adrenocortical function and provides a new strategy to optimize the structure of etomidate.


Asunto(s)
Corteza Suprarrenal/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Etomidato/análogos & derivados , Etomidato/farmacología , Hemodinámica/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Corteza Suprarrenal/metabolismo , Animales , Presión Sanguínea/fisiología , Corticosterona/sangre , Perros , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Hemodinámica/fisiología , Humanos , Masculino , Ratas , Ratas Wistar , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología
19.
Acta Pharm Sin B ; 11(7): 1947-1964, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386330

RESUMEN

Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 µmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.

20.
Front Endocrinol (Lausanne) ; 12: 653819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177800

RESUMEN

Objective: Hyperuricemia (HUA) is strongly associated with abnormal glucose metabolism and insulin resistance (IR). However, the precise molecular mechanism of HUA-induced IR is still unclear. Retinol binding protein 4 (RBP4) has been shown to induce IR in type 2 diabetes mellitus. This study was designed to clarify the relationship between RBP4 and HUA-induced IR and its potential mechanisms. Methods: Patients with HUA were collected to detect the levels of plasma RBP4 and clinical biochemical indicators. Rats were fed with 10% high yeast and oteracil potassium (300 mg/kg) via intraperitoneal injection once daily for eight weeks, and gavage with adenine (100 mg/kg) once daily from the fifth week to induce the HUA model. Glucose consumption testing was performed to determine the capacity of glucose intake and consumption in 3T3-L1 adipocytes. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the mRNA and protein level of RBP4 and insulin receptor substrate-phosphatidylinositol 3-kinase-active protein kinase (IRS/PI3K/Akt) signaling pathway-related proteins. Results: The levels of plasma RBP4 in both HUA patients and HUA rat models were significantly higher than that in the control groups. The level of plasma RBP4 was positively correlated with plasma uric acid, creatinine, fasting insulin, IR index, total cholesterol and triglyceride levels in patients with HUA. In HUA rats, the level of plasma RBP4 was positively correlated with plasma uric acid, IR index, and triglycerides. HUA rats also exhibited IR. After inhibition of RBP4 expression, the phosphorylation levels of the IRS/PI3K/Akt signaling pathway were increased, and IR was significantly improved. Conclusion: HUA induced IR both in vitro and in vivo. RBP4 may be involved in HUA-induced IR by inhibiting IRS/PI3K/Akt phosphorylation. Our findings may provide a new insight for the treatment of IR caused by HUA.


Asunto(s)
Hiperuricemia/sangre , Resistencia a la Insulina , Proteínas Plasmáticas de Unión al Retinol/biosíntesis , Células 3T3-L1 , Adipocitos/citología , Tejido Adiposo/metabolismo , Adulto , Animales , Índice de Masa Corporal , Femenino , Tasa de Filtración Glomerular , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Hiperuricemia/complicaciones , Técnicas In Vitro , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...