Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28549, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586358

RESUMEN

Age-related functional deterioration in skeletal muscle raises the risk for falls, disability, and mortality in the elderly, particularly in obese people or those with type 2 diabetes mellitus (T2D). However, the response of the skeletal muscle to transitioning from obesity to diabetes remains poorly defined, despite that obesity is classified as a stage of pre-diabetes. We screened and selected spontaneously obese and diabetic rhesus monkeys and examined altered protein expression in skeletal muscle of healthy aging (CON), obesity aging (OB), and type 2 diabetes mellitus aging (T2D) rhesus monkeys using Tandem Mass Tags (TMT)-based quantitative proteomic analysis. In total, we identified 142 differentially expressed proteins. Muscle-nerve communication proteins were firstly suppressed at obese-stage. With the disintegration of skeletal muscle, mitochondrial complex I and other energy homeostasis relate proteins were significantly disordered at T2D stage. Indicating that aging related obesity suppressed muscle-nerve communication and contribute to T2D related functional deterioration of skeletal muscles in elderly rhesus monkeys. Some alterations of muscular functional regulator are detected in both obesity and T2D samples, suggesting some T2D related skeletal muscular hypofunctions are occurring at obesity or pre-obesity stage. Muscle-nerve communication proteins and muscular function related proteins could be potential therapy target or early diagnose marker of for skeletal muscular hypofunctions in aging obesity populations.

2.
Protein Cell ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486356

RESUMEN

Adenomyosis is a poorly understood gynecological disorder lacking effective treatments. Controversy persists regarding "invagination" and "metaplasia" theories. The endometrial-myometrial junction (EMJ) connects the endometrium and myometrium and is important for diagnosing and classifying adenomyosis, but its in-depth study is just beginning. Using single-cell RNA sequencing and spatial profiling, we mapped transcriptional alterations across eutopic endometrium, lesions, and EMJ. Within lesions, we identified unique epithelial (LGR5+) and invasive stromal (PKIB+) subpopulations, along with WFDC1+ progenitor cells, supporting a complex interplay between "invagination" and "metaplasia" theories of pathogenesis. Further, we observed endothelial cell heterogeneity and abnormal angiogenic signaling involving VEGF and ANGPT pathways. Cell-cell communication differed markedly between ectopic and eutopic endometrium, with aberrant signaling in lesions involving PTN, TWEAK, and WNT cascades. This study reveals unique stem cell-like and invasive cell subpopulations within adenomyosis lesions identified, dysfunctional signaling, and EMJ abnormalities critical to developing precise diagnostic and therapeutic strategies.

3.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438896

RESUMEN

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Asunto(s)
Células Madre Mesenquimatosas , Insuficiencia Ovárica Primaria , Humanos , Femenino , Animales , Ratones , Anciano , Insuficiencia Ovárica Primaria/terapia , Oocitos , Células Madre , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
4.
Int J Pharm ; 640: 122999, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37254286

RESUMEN

The fused deposition modeling (FDM) technique has enormous potential for developing customized medical products with complicated structures. In this study, the application of the FDM technique to three medical products was investigated, and the risk factors affecting product quality were evaluated. For FDM-printed matrix and reservoir preparations, special attention should be paid to spacing width reduction and layered coating thickness. Therefore, spacing printing fidelity and interlayer bonding strength was established as unique indexes to characterize the effectiveness and safety of FDM-printed medicine. For FDM-printed orthopedic implants, layer height affected the dimensional deviation of surface morphology, which could be digitally evaluated. Moreover, internal structure affected the biomechanical behavior, which could be investigated using in silico simulation. The results reveal the broad application of FDM technology in customized medical products and might help to establish scientific and reasonable evaluation systems for them.


Asunto(s)
Impresión Tridimensional , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos
5.
Protein Cell ; 14(4): 262-278, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37084236

RESUMEN

Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the "trophectoderm (TE)-like structure" of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells. We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure. Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation. Furthermore, we demonstrated that blastocyst-like structures reconstituted by combining the EPS-derived bilineage embryo-like structure (BLES) with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses. In summary, our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.


Asunto(s)
Blastocisto , Tetraploidía , Embarazo , Femenino , Animales , Ratones , Embrión de Mamíferos , Diferenciación Celular , Desarrollo Embrionario
6.
Cell Stem Cell ; 30(4): 378-395.e8, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028404

RESUMEN

Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Animales , Ratones , Médula Ósea/metabolismo , Rejuvenecimiento , Células Madre Hematopoyéticas/metabolismo , Técnicas de Cocultivo , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre
7.
J Cardiovasc Transl Res ; 16(2): 414-426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36103035

RESUMEN

To clarify the mechanisms underlying TRPV4 regulating angiogenesis by enhancing the activity of CACs, we detected the angiogenesis ability of HUVEC co-cultured with CACs, the effects of ILK on TRPV4 expression and CACs activity, and the impacts of TRPV4 agonist or inhibitor on cardio-protection of AMI rats with or without CAC transplantation. ILK overexpression or TRPV4 agonist promoted the angiogenesis in HUVEC co-cultured with CACs. ILK overexpression or activation upregulated TRPV4 expression in CACs, while TRPV4 agonist stimulation also regulated ILK expression. TRPV4 agonist effectively improved the myocardial function of AMI rats. Moreover, this effect could be strengthened when combined with CAC transplantation, as CAC transplantation dramatically upregulated the expression of ILK and TRPV4 in heart tissues of AMI rats. Thus, the application of TRPV4 agonist may maintain the activity of CACs to promote angiogenesis and microcirculation reconstruction in the area of myocardial infarction and substantially improve the therapeutic effect.


Asunto(s)
Neovascularización Fisiológica , Canales Catiónicos TRPV , Ratas , Animales , Células Cultivadas , Corazón , Regeneración
8.
Stem Cell Reports ; 17(8): 1799-1809, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947961

RESUMEN

The METTL3-METTL14 complex, the "writer" of N6-methyladenosine (m6A), plays an important role in many biological processes. Previous studies have shown that Mettl3 overexpression can increase the level of m6A and promote somatic cell reprogramming. Here, we demonstrate that Mettl14, another component of the methyltransferase complex, can significantly enhance the generation of induced pluripotent stem cells (iPSCs) in an m6A-independent manner. In cooperation with Oct4, Sox2, Klf4, and c-Myc, overexpressed Mettl14 transiently promoted senescence-associated secretory phenotype (SASP) gene expression in non-reprogrammed cells in the late stage of reprogramming. Subsequently, we demonstrated that interleukin-6 (IL-6), a component of the SASP, significantly enhanced somatic cell reprogramming. In contrast, blocking the SASP using a senolytic agent or a nuclear factor κB (NF-κB) inhibitor impaired the effect of Mettl14 on reprogramming. Our results highlight the m6A-independent function of Mettl14 in reprogramming and provide new insight into the interplay between senescence and reprogramming in vitro.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Fenotipo Secretor Asociado a la Senescencia
9.
Int J Pharm ; 623: 121928, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35718250

RESUMEN

Given the benefits of high printing precision and capability, the selective laser sintering technique has been used to manufacture medicines and implants with unique engineering and functional properties. Using homogenized beams with a reduced thermal gradient and a larger diameter as an alternative energy source, the thermal stability and production efficiency of powder bed fusion would be improved. Herein, a novel homogenized spot melting (HSM) technology for pharmaceutical preparation was developed in this study. The melting behavior of typical pharmaceutical polymers under a homogenized spot was determined. A crystalline polymer with a low melting point was used as a solid binder, and the HSM printability and formation of drug-loaded formulations were explored. Oral solid dosage forms with different morphological and dissolution designs were prepared and evaluated under optimal formulation and process conditions. It was observed that HSM reduced the surface temperature distribution of the powder bed and improved the printability of drugs and excipients. Crystalline PEG 8000 with suitable flowability and heat conduction efficiency in the molten state was preferable for HSM printing. Incorporating 40% PEG 8000 as a solid binder was an effective strategy for HSM processing of unfused or unstable powders. Solid preparations with different structures and dissolution behaviors were successfully printed, suggesting that HSM is a promisingtechnique for personalized medicine.


Asunto(s)
Excipientes , Impresión Tridimensional , Formas de Dosificación , Liberación de Fármacos , Excipientes/química , Polímeros/química , Polvos/farmacología , Comprimidos/química , Tecnología Farmacéutica/métodos
10.
Stem Cell Reports ; 17(7): 1730-1742, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750045

RESUMEN

Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.


Asunto(s)
Histonas , Nucleosomas , Animales , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario/genética , Histonas/metabolismo , Ratones , Técnicas de Transferencia Nuclear , Nucleosomas/metabolismo
11.
Nat Cell Biol ; 24(6): 917-927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35606490

RESUMEN

N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of m6A in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input m6A RNA immunoprecipitation followed by sequencing to reveal the transcriptome-wide m6A landscape in mouse oocytes and early embryos and found unique enrichment and dynamics of m6A RNA modifications on maternal and zygotic RNAs, including the transcripts of transposable elements MTA and MERVL. Notably, we found that the maternal protein KIAA1429, a component of the m6A methyltransferase complex, was essential for m6A deposition on maternal mRNAs that undergo decay after zygotic genome activation and MTA transcripts to maintain their stability in oocytes. Interestingly, m6A methyltransferases, especially METTL3, deposited m6A on mRNAs transcribed during zygotic genome activation and ensured their decay after the two-cell stage, including Zscan4 and MERVL. Together, our findings uncover the essential functions of m6A in specific contexts during the maternal-to-zygotic transition, namely ensuring the stability of mRNAs in oocytes and the decay of two-cell-specific transcripts after fertilization.


Asunto(s)
Desarrollo Embrionario , ARN , Animales , Ratones , Adenosina/análogos & derivados , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo , Oocitos/metabolismo , ARN/genética , ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cigoto/metabolismo
12.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407291

RESUMEN

Morphology-control, as a promising and effective strategy, is widely implemented to change surface atomic active sites and thus enhance the intrinsic electrocatalytic activity and selectivity. As a typical n-type semiconductor, a series of bismuth vanadate samples with tunable morphologies of clavate, fusiform, flowered, bulky, and nanoparticles were prepared to investigate the morphology effect. Among all the synthesized samples, the clavate shaped BiVO4 with high index facets of (112), (301), and (200) exhibited reduced extrinsic pseudocapacitance and enhanced redox response, which is beneficial for tackling the sluggish voltammetric response of the traditional nanoparticle on the electrode surface. Benefiting from the large surface-active area and favorable ion diffusion channels, the clavate shaped BiVO4 exhibited the best electrochemical sensing performance for paracetamol with a linear response in the range of 0.5-100 µmol and a low detection limit of 0.2 µmol. The enhanced electrochemical detection of paracetamol by bismuth vanadate nanomaterials with controllable shapes indicates their potential for applications as electrochemical sensors.

13.
Postgrad Med ; 134(3): 309-315, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35274579

RESUMEN

OBJECTIVES: Although inter-arm blood pressure difference (IAD) and inter-ankle blood pressure difference (IAND) have been shown to be associated with cardiovascular disease, controversy remains. In this study, we investigated the prevalence of IAD and IAND as well as the correlation with arterial stiffness and systolic blood pressure in a large number of the Chinese population. METHODS: The four-limb blood pressure, IAD, IAND, brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) of 12,176 participants have been measured. Multivariate logistic regression analysis was used to analyze the relationship of the increase in IAD/IAND with arterial stiffness and blood pressure. Reporting adheres to the STROBE guidelines. RESULTS: In 12,176 participants, 1832 (15%) subjects had an IAD≥10 mmHg, 663 (5%) had an IAD≥15 mmHg, and 291 (2%) had an IAD≥20 mmHg. Correspondingly, 4548 (37%) had an IAND≥10 mmHg, 2706 (22%) had an IAND≥15 mmHg, and 1706 (14%) had an IAND≥20 mmHg. baPWV was significantly higher in those with an IAD≥10 mmHg (1881 ± 487 cm/s vs. 1943 ± 508 cm/s, P = 0.036) and IAND≥10 mmHg (1850 ± 476 cm/s vs. 1955 ± 509 cm/s, P = 0.000). Compared to others, those with IAD or IAND≥10 mmHg had higher systolic blood pressure (SBP), higher prevalence of hypertension, larger male gender ratio, bigger body mass index, higher pulse rate and lower ABI (P < 0.001 for all). A significant association with baPWV was observed for IAND≥10 mmHg (OR = 1.117; 95%CI: 1.039-1.201; P = 0.003) not for IAD≥10 mmHg (OR = 0.771; 95%CI: 0.699-0.851; P = 0.000) in multivariate logistic regression analysis. CONCLUSIONS: Limb blood pressure differences were closely related to arterial stiffness and systolic blood pressure, allowing for a more comprehensive assessment of cardiovascular risk.


Asunto(s)
Hipertensión , Rigidez Vascular , Índice Tobillo Braquial , Presión Sanguínea , Estudios Transversales , Humanos , Hipertensión/epidemiología , Masculino , Análisis de la Onda del Pulso
14.
Int J Pharm ; 599: 120410, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33639229

RESUMEN

The poor printability of most pharmaceutical polymers greatly restricts the application of the fused deposition modeling (FDM) technique in the field of personalized pharmaceutical preparations. General strategies to improve printability and provide practical guidelines for the optimization of formulations are lacking. Moreover, the mechanism associated with the smooth printing process of modified printing materials needs to be investigated. In this study, three different strategies were used to improve the FDM printability of typical brittle polymers with poor printability. The relationship among additives, material properties, and printability was explored. The finite element method was used to simulate the radial stress-strain behavior of the filament, while computational fluid dynamics was used to simulate the axial melt flow field in the printing head. It was found that the addition of an inert filler (i.e., talc), a drug with high melting points (i.e., diclofenac sodium), and a polymer with high strength (i.e., plasticized ethylcellulose) effectively improved the printability of plasticized Eudragit® EPO and Soluplus®. In addition, regulating the mechanical properties of filaments improved printability, and it was deduced that printable filaments should have neither very low stiffness nor very low flexibility. The suitable melt viscosity or shear-thinning property of the printing material facilitated smooth extrusion without filament breakage or nozzle blockage. The results of this study also showed that simulation could assist in understanding the stress-strain behavior of filaments and the flow field of melts during FDM printing.


Asunto(s)
Excipientes , Polímeros , Polietilenglicoles , Ácidos Polimetacrílicos , Polivinilos , Impresión Tridimensional , Solubilidad
15.
BMC Genomics ; 20(1): 248, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922236

RESUMEN

BACKGROUND: Multicellular organisms require precise gene regulation during ontogeny, and epigenetic modifications, such as DNA methylation and histone modification, facilitate this precise regulation. The conservative reprogramming patterns of DNA methylation in vertebrates have been well described. However, knowledge of how histone modifications are passed on from gametes to early embryos is limited, and whether histone modification reprogramming is conserved is not clear. RESULTS: We profiled H3K4me3/H3K27me3 modifications in gametes and early embryos in zebrafish and found that the patterns in gene promoter regions have been largely set to either co-occupied or active states in gametes and then passed on to early embryos. Co-occupied states are partially maintained, while active states are largely restored to nearly match the sperm's pattern prior to zygotic genome activation (ZGA). However, repressive H3K27me3 modifications in promoter regions are largely discarded in early embryos. Prior to ZGA, patterns of genes that initialize ZGA are converted to nonrepressive states to coordinate gene expression. Moreover, promoter peaks that mark stage-specific genes are hypermethylated, and histone modifications in these regions are erased independently of DNA methylation reprogramming. Furthermore, comparative analysis revealed that the functions of co-occupied and active genes passed on from gametes are conserved in vertebrates. Gene age preferences by co-occupied and active histone modifications are also confirmed in vertebrates. CONCLUSIONS: Our data provide fundamental resources for understanding H3K4me3/H3K27me3 modifications in early zebrafish embryos. The data also reveal that the reprogramming progress of histone modifications is conserved in vertebrates and coordinates with gene expression during ZGA.


Asunto(s)
Metilación de ADN , Perfilación de la Expresión Génica/métodos , Histonas/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , Masculino , Oocitos/química , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Espermatozoides/química , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
16.
Natl Sci Rev ; 6(5): 993-1003, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34691960

RESUMEN

Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.

17.
Cell Discov ; 4: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109120

RESUMEN

DNA methylation plays important roles during development. However, the DNA methylation reprogramming of functional elements has not been fully investigated during mammalian embryonic development. Herein, using our modified MethylC-Seq library generation method and published post-bisulphite adapter-tagging (PBAT) method, we generated genome-wide DNA methylomes of human gametes and early embryos at single-base resolution and compared them with mouse methylomes. We showed that the dynamics of DNA methylation in functional elements are conserved between humans and mice during early embryogenesis, except for satellite repeats. We further found that oocyte-specific hypomethylated promoters usually exhibit low CpG densities. Genes with oocyte-specific hypomethylated promoters generally show oocyte-specific hypomethylated genic and intergenic regions, and these hypomethylated regions contribute to the hypomethylation pattern of mammalian oocytes. Furthermore, hypomethylated genic regions with low CG densities correlate with gene silencing in oocytes, whereas hypomethylated genic regions with high CG densities correspond to high gene expression. We further show that methylation reprogramming of enhancers during early embryogenesis is highly associated with the development of almost all human organs. Our data support the hypothesis that DNA methylation plays important roles during mammalian development.

18.
J Genet Genomics ; 44(10): 475-481, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29037989

RESUMEN

Proper reprogramming of parental DNA methylomes is essential for mammalian embryonic development. However, it is unknown whether abnormal methylome reprogramming occurs and is associated with the failure of embryonic development. Here we analyzed the DNA methylomes of 57 blastocysts and 29 trophectoderm samples with different morphological grades during assisted reproductive technology (ART) practices. Our data reveal that the global methylation levels of high-quality blastocysts are similar (0.30 ± 0.02, mean ± SD), while the methylation levels of low-quality blastocysts are divergent and away from those of high-quality blastocysts. The proportion of blastocysts with a methylation level falling within the range of 0.30 ± 0.02 in different grades correlates with the live birth rate for that grade. Moreover, abnormal methylated regions are associated with the failure of embryonic development. Furthermore, we can use the methylation data of cells biopsied from trophectoderm to predict the blastocyst methylation level as well as to detect the aneuploidy of the blastocysts. Our data indicate that global abnormal methylome reprogramming often occurs in human embryos, and suggest that DNA methylome is a potential biomarker in blastocyst selection in ART.


Asunto(s)
Blastocisto/metabolismo , Metilación de ADN , Genómica , Técnicas Reproductivas Asistidas , Aneuploidia , Islas de CpG/genética , Genoma Humano/genética , Humanos , Nacimiento Vivo
19.
Cell ; 170(2): 367-381.e20, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28709003

RESUMEN

High-order chromatin structure plays important roles in gene expression regulation. Knowledge of the dynamics of 3D chromatin structures during mammalian embryo development remains limited. We report the 3D chromatin architecture of mouse gametes and early embryos using an optimized Hi-C method with low-cell samples. We find that mature oocytes at the metaphase II stage do not have topologically associated domains (TADs). In sperm, extra-long-range interactions (>4 Mb) and interchromosomal interactions occur frequently. The high-order structures of both the paternal and maternal genomes in zygotes and two-cell embryos are obscure but are gradually re-established through development. The establishment of the TAD structure requires DNA replication but not zygotic genome activation. Furthermore, unmethylated CpGs are enriched in A compartment, and methylation levels are decreased to a greater extent in A compartment than in B compartment in embryos. In summary, the global reprogramming of chromatin architecture occurs during early mammalian development.


Asunto(s)
Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Animales , Cromatina/química , Islas de CpG , Metilación de ADN , Replicación del ADN , Embrión de Mamíferos/química , Epigénesis Genética , Femenino , Células Germinativas/metabolismo , Masculino , Metafase , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Oocitos/citología , Espermatozoides/metabolismo , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...