Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39057677

RESUMEN

To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.

2.
Life Sci ; 328: 121873, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37352916

RESUMEN

Heart failure typically occurs early in the clinical course of sustained cardiac hypertrophy that is accompanied by maladaptive remodeling of the heart. It is critical to discover new mechanisms and effective therapeutic targets to prevent and cure pathological cardiac hypertrophy. The objective of the study was to evaluate the effects of circRNAs on NSD2-induced ventricular remodeling. We screened the dysregulated circRNAs in normal or NSD2-/- C57BL/6 mice with or without transverse aortic constriction (TAC), and found that circCmss1 significantly increased in normal TAC mice, but decreased in NSD2-/- TAC mice. Angiotensin II(Ang II)induced neonatal cardiomyocyte hypertrophy in vitro and the pressure overload-induced cardiac hypertrophy in vivo can be reduced by Knocking down circCmss1. We further investigated the downstream signaling of circCmss1 in the progression of NSD2-promoted ventricular remodeling and discovered that circCmss1 could interact with a transcription factor EIF4A3 and induce the expression of transferrin receptor 1 (TfR1), thus activating the ferroptosis in cardiomyocytes. This study highlights the significance of NSD2 activation of circCmss1/EIF4A3/TfR1 as therapeutic targets for treating pathological myocardial hypertrophy.


Asunto(s)
Ferroptosis , Remodelación Ventricular , Animales , Ratones , Cardiomegalia/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , ARN Circular/metabolismo
5.
World J Clin Cases ; 9(12): 2890-2898, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33969074

RESUMEN

BACKGROUND: Convalescent plasma therapy is used for the treatment of critically ill patients for newly discovered infectious diseases, such as coronavirus disease 2019 (COVID-19) pneumonia, under the premise of lacking specific treatment drugs and corresponding vaccines. But the best timing application of plasma therapy and whether it is effective by antiviral and antibiotic treatment remain unclear. CASE SUMMARY: We describe a patient with COVID-19, a 100-year-old, high-risk, elderly male who had multiple underlying diseases such as stage 2 hypertension (very high-risk group) and infectious pneumonia accompanied by chronic obstructive pulmonary disease and emphysema. We mainly describe the diagnosis, clinical process, and treatment of the patient, including the processes of two plasma transfusion treatments. CONCLUSION: This provides a reference for choosing the best timing of convalescent plasma treatment and highlights the effectiveness of the clinical strategy of plasma treatment in the recovery period of patients with COVID-19 pneumonia.

6.
Biomed Environ Sci ; 33(8): 603-613, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32933612

RESUMEN

OBJECTIVE: To detect the effects of shortwave radiation on dose-dependent cardiac structure and function in rats after radiation and to elucidate the mechanism of shortwave radiation induced cardiac injury to identify sensitive indicators and prophylactic treatment. METHODS: One hundred Wistar rats were either exposed to 27 MHz continuous shortwave at a power density of 5, 10, and 30 mW/cm 2 for 6 min or undergone sham exposure for the control (the rats had to be placed in the exposure system with the same schedules as the exposed animals, but with an inactive antenna). The Ca 2+, glutamic oxaloacetic transaminase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) content in the peripheral serum of the rats were detected by an automatic blood biochemical analyser. The electrocardiogram (ECG) of standard lead II was recorded by a multi-channel physiological recording and analysis system. The cardiac structure of rats was observed by light and electron microscopy. RESULTS: The results showed that the 5, 10, and 30 mW/cm 2 shortwave radiation caused a significant increased in the levels of Ca 2+, AST, CK, and LDH in the peripheral serum of rats. The cardiac structure was damaged by radiation and showed a disordered arrangement of myocardial fibres, the cavitation and swelling of myocardial mitochondria. These injuries were most significant 7 d after radiation and were not restored until 28 d after radiation. CONCLUSION: Shortwave radiation of 5, 10, and 30 mW/cm 2 can damage rat cardiac function, including damage to the tissue structure and ultrastructure, especially at the level of the myocardial fibres and mitochondria. Shortwave radiation at 5, 10, and 30 mW/cm 2 induced damage to rat heart function and structure with a dose-effect relationship, i.e., the greater the radiation dose was, the more significant the damage was.


Asunto(s)
Cardiopatías/patología , Corazón/efectos de la radiación , Miocardio/patología , Ondas de Radio/efectos adversos , Animales , Relación Dosis-Respuesta en la Radiación , Cardiopatías/etnología , Cardiopatías/fisiopatología , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
8.
Biomed Environ Sci ; 32(10): 739-754, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31843044

RESUMEN

OBJECTIVE: This study aimed to explore the potential effects of terahertz (THz) waves on primary cultured neurons from 4 rat brain regions (hippocampus, cerebral cortex, cerebellum, and brainstem) and 3 kinds of neuron-like cells (MN9D, PC12, and HT22 cells) under nonthermal conditions. METHODS: THz waves with an output power of 50 (0.16 THz) and 10 (0.17 THz) mW with exposure times of 6 and 60 min were used in this study. Analysis of temperature change, neurite growth, cell membrane roughness, micromorphology, neurotransmitters and synaptic-related proteins (SYN and PSD95) was used to evaluate the potential effects. RESULTS: Temperature increase caused by the THz wave was negligible. THz waves induced significant neurotransmitter changes in primary hippocampal, cerebellar, and brainstem neurons and in MN9D and PC12 cells. THz wave downregulated SYN expression in primary hippocampal neurons and downregulated PSD95 expression in primary cortical neurons. CONCLUSION: Different types of cells responded differently after THz wave exposure, and primary hippocampal and cortical neurons and MN9D cells were relatively sensitive to the THz waves. The biological effects were positively correlated with the exposure time of the THz waves.


Asunto(s)
Regulación hacia Abajo/efectos de la radiación , Hipocampo/efectos de la radiación , Neuronas/efectos de la radiación , Radiación Terahertz/efectos adversos , Animales , Células PC12 , Ratas , Ratas Wistar
9.
Biomed Environ Sci ; 32(3): 189-198, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30987693

RESUMEN

OBJECTIVE: To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms. METHODS: One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure. RESULTS: The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB. CONCLUSION: Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Electroencefalografía/efectos de la radiación , Hipocampo/efectos de la radiación , Memoria/efectos de la radiación , Cuerpos de Nissl/efectos de la radiación , Ondas de Radio/efectos adversos , Aprendizaje Espacial/efectos de la radiación , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta en la Radiación , Masculino , Cuerpos de Nissl/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Sci Rep ; 8(1): 10403, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991768

RESUMEN

Anxiety and speculation about potential health hazards of microwaves exposure are spreading in the past decades. Hypoxia-inducible factor-1α (HIF-1α), which can be activated by reactive oxygen species (ROS), played pivotal roles in protective responses against microwave in neuron-like cells. In this study, we established 30 mW/cm2 microwave exposed animal model, which could result in revisable injuries of neuronal mitochondria, including ultrastructure and functions, such as ROS generation and cytochrome c oxidase (COX) activity. We found that the ratio of COXIV-1/COXIV-2, two isoforms of COXIV, decreased at 1 d and increased from 3 d to 14 d. Similar expression changes of HIF-1α suggested that COXIV-1 and COXIV-2 might be regulated by HIF-1α. In neuron-like cells, 30 mW/cm2 microwave down-regulated COX activity from 30 min to 6 h, and then started to recover. And, both HIF-1α transcriptional activity and COXIV-1/COXIV-2 ratio were up-regulated at 6 h and 9 h after exposure. Moreover, HIF-1α inhibition down-regulated COXIV-1 expression, promoted ROS generation, impaired mitochondrial membrane potentials (MMP), as well as abolished microwave induced ATP production. In conclusion, microwave induced mitochondrial ROS production activated HIF-1α and regulated COXIV-1 expression to restore mitochondria functions. Therefore, HIF-1α might be a potential target to impair microwave induced injuries.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Microondas/efectos adversos , Neuronas/efectos de la radiación , Animales , Complejo IV de Transporte de Electrones/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/efectos de la radiación , Neuronas/patología , Ratas , Especies Reactivas de Oxígeno/química
12.
Brain Res ; 1679: 134-143, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180226

RESUMEN

The popularization of microwave raised concerns about its influence on health including cognitive function which is associated greatly with dendritic spines plasticity. SNK-SPAR is a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity. In this study, Wistar rats were exposed to microwaves (30 mW/cm2 for 6 min, 3 times/week for 6 weeks). Spatial learning and memory function, distribution of dendritic spines, ultrastructure of the neurons and their dendritic spines in hippocampus as well as the related critical molecules of SNK-SPAR pathway were examined at different time points after microwave exposure. There was deficiency in spatial learning and memory in rats, loss of spines in granule cells and shrinkage of mature spines in pyramidal cells, accompanied with alteration of ultrastructure of hippocampus neurons. After exposure to 30 mW/cm2 microwave radiation, the up-regulated SNK induced decrease of SPAR and PSD-95, which was thought to cause the changes mentioned above. In conclusion, the microwave radiation led to shrinkage and even loss of dendritic spines in hippocampus by SNK-SPAR pathway, resulting in the cognitive impairments.


Asunto(s)
Espinas Dendríticas/efectos de la radiación , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/citología , Microondas/efectos adversos , Neuronas/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/ultraestructura , Hipocampo/efectos de la radiación , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Microscopía Electrónica de Transmisión , Neuronas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Sinapsis/ultraestructura , Factores de Tiempo , Regulación hacia Arriba/efectos de la radiación
13.
Pathobiology ; 82(5): 181-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26337368

RESUMEN

Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Microondas/efectos adversos , Neuronas/efectos de la radiación , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Homólogo 4 de la Proteína Discs Large , Hipocampo/química , Hipocampo/citología , Hipocampo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Neuronas/metabolismo , Neuronas/ultraestructura , Células PC12 , Densidad Postsináptica/efectos de la radiación , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/efectos de la radiación , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal , Transmisión Sináptica/efectos de la radiación
14.
Biomed Res Int ; 2015: 124721, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866755

RESUMEN

The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4 Gy group, and neutron irradiation of 4 Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4 Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4 Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells.


Asunto(s)
Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Neutrones/efectos adversos , Transducción de Señal/efectos de la radiación , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Células Epiteliales/patología , Mucosa Intestinal/patología , Morfolinas/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
15.
Biomed Environ Sci ; 28(1): 13-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25566859

RESUMEN

OBJECTIVE: The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment. METHODS: 48 male Wistar rats were exposed to 30 mW/cm2 microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm2 microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated. RESULTS: Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined. CONCLUSION: 30 mW/cm2 microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.


Asunto(s)
Hipocampo/citología , Microondas , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de la radiación , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Regulación de la Expresión Génica/efectos de la radiación , Neurotransmisores/metabolismo , Células PC12 , Ratas , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/fisiología , Factores de Tiempo
16.
Physiol Behav ; 140: 236-46, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25542888

RESUMEN

The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Trastornos del Conocimiento/etiología , Microondas/efectos adversos , Serotonina/metabolismo , Animales , Encéfalo/patología , Ondas Encefálicas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Electroencefalografía , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Degeneración Nerviosa/etiología , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de la radiación , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Natación/psicología , Tiempo , Factores de Tiempo , Triptófano Hidroxilasa/metabolismo
17.
Mol Neurobiol ; 52(1): 478-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25195697

RESUMEN

Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.


Asunto(s)
Barrera Hematoencefálica/lesiones , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Microondas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Línea Celular , Modelos Biológicos , Ocludina/metabolismo , Permeabilidad , Ratas , Transducción de Señal , Uniones Estrechas/metabolismo
18.
Mol Neurobiol ; 50(3): 1024-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24627260

RESUMEN

Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Microondas , Mitocondrias/efectos de la radiación , Neuronas/efectos de la radiación , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/metabolismo , Neuronas/metabolismo , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo
19.
Biophys J ; 103(1): 19-28, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22828328

RESUMEN

Protein structures define a complex network of atomic interactions in three dimensions. Direct visualization of the structure and analysis of the interaction potential energy are not straightforward approaches to pinpoint the atomic contacts that are crucial for protein function. We used the tetrameric hyperpolarization-activated cAMP-regulated (HCN) channel as a model system to study the intersubunit contacts in cAMP-dependent gating. To obtain a systematic survey of the contacts between each pair of residues, we used normal-mode analysis, a computational approach for studying protein dynamics, and constructed the covariance matrix for C-α atoms. The significant contacts revealed by covariance analysis were further investigated by means of mutagenesis and functional assays. Among the mutant channels that show phenotypes different from those of the wild-type, we focused on two mutant channels that express opposite changes in cAMP-dependent gating. Subsequent biochemical assays on isolated C-terminal fragments, including the cAMP binding domain, revealed only minimal effects on cAMP binding, suggesting the necessity of interpreting the cAMP-dependent allosteric regulation at the whole-channel level. For this purpose, we applied the patch-clamp fluorometry technique and observed correlated changes in the dynamic, state-dependent cAMP binding in the mutant channels. This study not only provides further understanding of the intersubunit contacts in allosteric coupling in the HCN channel, it also illustrates an effective strategy for delineating important atomic contacts within a structure.


Asunto(s)
AMP Cíclico/química , Activación del Canal Iónico , Canales Iónicos/química , Simulación de Dinámica Molecular , Subunidades de Proteína/química , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/genética , Canales Iónicos/fisiología , Ratones , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Xenopus
20.
J Agric Food Chem ; 58(3): 1746-54, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20050687

RESUMEN

Unintended compositional changes in transgenic rice seeds were studied by near-infrared reflectance, GC-MS, HPLC, and ICP-AES coupled with chemometrics strategies. Three kinds of transgenic rice with resistance to fungal diseases or insect pests were comparatively studied with the nontransgenic counterparts in terms of key nutrients such as protein, amino acids, fatty acids, vitamins, elements, and antinutrient phytic acid recommended by the Organization for Economic Co-operation and Development (OECD). The compositional profiles were discriminated by chemometrics methods, and the discriminatory compounds were protein, three amino acids, two fatty acids, two vitamins, and several elements. Significance of differences for these compounds was proved by analysis of variance, and the variation extent ranged from 20 to 74% for amino acids, from 19 to 38% for fatty acids, from 25 to 57% for vitamins, from 20 to 50% for elements, and 25% for protein, whereas phytic acid content did not change significantly. The unintended compositional alterations as well as unintended change of physical characteristic in transgenic rice compared with nontransgenic rice might be related to the genetic transformation, the effect of which needs to be elucidated by additional studies.


Asunto(s)
Oryza/química , Plantas Modificadas Genéticamente/química , Semillas/química , Aminoácidos/análisis , Cromatografía/métodos , Ácidos Grasos/análisis , Oryza/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA