Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Macromol Rapid Commun ; : e2400284, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38967216

RESUMEN

Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.

2.
Bioresour Technol ; : 131090, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986880

RESUMEN

To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ±â€¯1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.

3.
Small Methods ; : e2400204, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38948952

RESUMEN

The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high-throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient-derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)-Gelatin-Matrigel microgels. The usage of GelMA-Gelatin-Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell-laden hydrogel and the uniform generation of assembloids in a high-throughput manner. Notably, the patient-derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high-throughput drug screening and predicting the clinical outcomes of various drugs.

4.
Food Chem ; 459: 140434, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003854

RESUMEN

Tricyclazole is commonly used to prevent rice blast to meet the carbohydrate intake needs of half of the global population, and a large number of toxicological reports indicate that monitoring of tricyclazole is necessary. Here, we analyzed the structure of tricyclazole and designed different hapten derivatization strategies to prepare a high-performance monoclonal antibody (half inhibition concentration of 1.61 ng/mL), and then a lateral flow immunochromatographic sensor based on gold nanoparticles for the detection of tricyclazole in rice, with a limit of detection of 6.74 µg/kg and 13.58 µg/kg in polished and brown rice, respectively. The recoveries in rice were in the range of 84.6-107.4%, no complex pretreatment was required for comparison with LC-MS/MS, and the comparative analysis demonstrated that our method had good accuracy and precision. Therefore, the developed lateral flow immunochromatographic analysis was a reliable and rapid means for the on-site analysis of tricyclazole in rice.

5.
Talanta ; 277: 126415, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38878513

RESUMEN

Endothelial cells (ECs) migration is a crucial early step in vascular repair and tissue neovascularization. While extensive research has elucidated the biochemical drivers of endothelial motility, the impact of biophysical cues, including vessel geometry and topography, remains unclear. Herein, we present a novel approach to reconstruct 3D self-assembly blood vessels-on-a-chip that accurately replicates real vessel geometry and topography, surpassing conventional 2D flat tube formation models. This vessels-on-a-chip system enables real-time monitoring of vasculogenesis and ECs migration at high spatiotemporal resolution. Our findings reveal that ECs exhibit increased migration speed and directionality in response to narrower vessel geometries, transitioning from a rounded to a polarized morphology. These observations underscore the critical influence of vessel size in regulating ECs migration and morphology. Overall, our study highlights the importance of biophysical factors in shaping ECs behavior, emphasizing the need to consider such factors in future studies of endothelial function and vessel biology.

6.
Cancer Imaging ; 24(1): 80, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943156

RESUMEN

BACKGROUND: This study aimed to evaluate the T2W hypointense ring and T2-FLAIR mismatch signs in gliomas and use these signs to construct prediction models for glioma grading and isocitrate dehydrogenase (IDH) mutation status. METHODS: Two independent radiologists retrospectively evaluated 207 glioma patients to assess the presence of T2W hypointense ring and T2-FLAIR mismatch signs. The inter-rater reliability was calculated using the Cohen's kappa statistic. Two logistic regression models were constructed to differentiate glioma grade and predict IDH genotype noninvasively, respectively. Receiver operating characteristic (ROC) analysis was used to evaluate the developed models. RESULTS: Of the 207 patients enrolled (119 males and 88 females, mean age 51.6 ± 14.8 years), 45 cases were low-grade gliomas (LGGs), 162 were high-grade gliomas (HGGs), 55 patients had IDH mutations, and 116 were IDH wild-type. The number of T2W hypointense ring signs was higher in HGGs compared to LGGs (p < 0.001) and higher in the IDH wild-type group than in the IDH mutant group (p < 0.001). There were also significant differences in T2-FLAIR mismatch signs between HGGs and LGGs, as well as between IDH mutant and wild-type groups (p < 0.001). Two predictive models incorporating T2W hypointense ring, absence of T2-FLAIR mismatch, and age were constructed. The area under the ROC curve (AUROC) was 0.940 for predicting HGGs (95% CI = 0.907-0.972) and 0.830 for differentiating IDH wild-type (95% CI = 0.757-0.904). CONCLUSIONS: The combination of T2W hypointense ring, absence of T2-FLAIR mismatch, and age demonstrate good predictive capability for HGGs and IDH wild-type. These findings suggest that MRI can be used noninvasively to predict glioma grading and IDH mutation status, which may have important implications for patient management and treatment planning.


Asunto(s)
Neoplasias Encefálicas , Genotipo , Glioma , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Mutación , Clasificación del Tumor , Humanos , Glioma/genética , Glioma/patología , Glioma/diagnóstico por imagen , Isocitrato Deshidrogenasa/genética , Femenino , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Curva ROC
7.
ACS Appl Mater Interfaces ; 16(26): 34377-34385, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904479

RESUMEN

The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.

8.
Heliyon ; 10(11): e32139, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868014

RESUMEN

SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.

9.
J Fish Biol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897922

RESUMEN

Exosomes participate in intercellular communication by carrying proteins, messenger RNA, microRNAs, and non-coding RNA. Fatty liver is a common phenomenon in farmed fish, but there has been little study of fatty hepatocytes-derived exosomes. Here, we successfully isolated exosomes from hepatocytes of grass carp, named Exos (hepatocytes-derived exosomes) and OA-Exos (fatty hepatocytes-derived exosomes), from which 617 differentially expressed proteins were identified using liquid chromatography tandem mass spectrometry. Of these, 320 proteins were promoted and 297 proteins were restrained, which were gathered in biological processes and cellular components (cellular processes, cells, and intracellular structures). The results of kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the differential expression proteins were gathered in "carbohydrate transport and metabolism", "translation, ribosomal structure and biogenesis", "posttranslational modification, protein turnover, chaperones", and "intracellular trafficking, secretion, and vesicular transport". In addition, five differentially expressed exosomal proteins were further confirmed by parallel reaction monitoring, including 2-phospho-D-glycerate hydrolyase, cytochrome b5, fatty acid-binding protein domain-containing protein, metallothionein, and malate dehydrogenas, which were downregulated. These findings provided evidence that exosomes derived from fatty hepatocytes of grass carp may be biomarkers for the early diagnosis, treatment, and prevention of fatty liver in fishery development.

10.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727340

RESUMEN

Nanoscale agrochemicals have been widely used in sustainable agriculture and may potentially affect the nitrogen fixation process in legume crops. The present study investigated the size-effects of copper oxide nanoparticles (CuO NPs) on nitrogen assimilation in soybean (G. max (L.) Merrill) plants, which were treated with different sizes (20 and 50 nm) of CuO NPs at low use doses (1 and 10 mg/kg) for 21 days under greenhouse conditions. The results showed that 50 nm CuO NPs significantly increased the fresh biomass more than 20 nm CuO NPs achieved at 10 mg/kg. The activities of N assimilation-associated enzymes and the contents of nitrogenous compounds, including nitrates, proteins, and amino acids, in soybean tissues were greatly increased across all the CuO NP treatments. The use doses of two sizes of CuO NPs had no impact on the Cu contents in shoots and roots but indeed increased the Cu contents in soils in a dose-dependent fashion. Overall, our findings demonstrated that both 20 and 50 nm CuO NPs could positively alter soybean growth and boost N assimilation, furthering our understanding that the application of nanoscale micro-nutrient-related agrochemicals at an optimal size and dose will greatly contribute to increasing the yield and quality of crops.

11.
Sci Rep ; 14(1): 11961, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796571

RESUMEN

Tibetan-speaking patients seeking care in predominantly Mandarin-speaking healthcare settings frequently face communication barriers, leading to potential disparities and difficulties in accessing care. To address this issue, we translated, culturally adapted, and validated the Numerical Pain Rating Scale (NPRS) and the Global Rating of Change (GRoC) into Tibetan (NPRS-Tib and GRoC-Tib), aiming to facilitate cross-linguistic and cross-cultural interactions while examining potential challenges in the adaptation process. Using standard translation-backward translation methods, expert review, pilot testing, and validation through a cross-sectional study with a short-term longitudinal component, we engaged 100 Tibetan patients with musculoskeletal trauma for psychometric validation, including 37 women (aged 22-60 years, mean age 39.1 years). The NPRS-Tib and GRoC-Tib exhibited outstanding psychometric properties, with an Intraclass Correlation Coefficient (ICC) of 0.983 for NPRS-Tib indicating superb test-retest reliability, and expert review confirming good content validity for both instruments. A Spearman's correlation coefficient (Rho) of -0.261 (P = 0.0087) revealed a significant, albeit weak, correlation between changes in NPRS-Tib scores and GRoC-Tib scores. The adaptation process also presented notable challenges, including translation discrepancies from translators' diverse backgrounds and levels of expertise, ambiguity in scale options, and the lack of established tools for criterion validity assessment in Tibetan.


Asunto(s)
Dimensión del Dolor , Psicometría , Humanos , Femenino , Adulto , Tibet , Persona de Mediana Edad , Masculino , Psicometría/métodos , Dimensión del Dolor/métodos , Estudios Transversales , Adulto Joven , Reproducibilidad de los Resultados , Traducciones , Traducción , Encuestas y Cuestionarios , Dolor Musculoesquelético
12.
Theranostics ; 14(7): 2687-2705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773980

RESUMEN

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Asunto(s)
Células Epiteliales Alveolares , Bleomicina , Modelos Animales de Enfermedad , Hierro , Mitocondrias , Fibrosis Pulmonar , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Ratones , Hierro/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular , Masculino
13.
Heliyon ; 10(10): e31457, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813179

RESUMEN

This study underscores the effectiveness of Qualitative Comparative Analysis (QCA) when compared to conventional regression analysis (CRA) in the investigation of complex human systems. Utilizing historical secondary cross-national data from Lipset & Man (1960) spanning 18 countries, where CRA may be impractical, the research emphasizes the superior performance of QCA, specifically utilizing both crisp set QCA and fuzzy set QCA. The dataset includes variables such as democracy survival and its precursors, such as gross national product per capita, urbanization, literacy rate, and industrial labor force. In contrast to conventional regression results indicating an insignificant relationship between democracy survival and its antecedents, crisp set QCA identifies two distinct combinations of antecedents associated with high levels of democracy survival, albeit with limited solution coverage. Meanwhile, fuzzy set qualitative comparative analysis (fsQCA) reveals five combinations of antecedents linked to robust democracy survival, providing adequate solution coverage and consistency. These findings suggest that fsQCA excels in capturing the intricacies of real-life scenarios in human complex systems, offering more robust empirical solutions compared to crisp set QCA and conventional regression. As a result, researchers may find value in integrating fsQCA into their new projects focused on human complex systems.

14.
Virology ; 595: 110094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692133

RESUMEN

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Asunto(s)
Pollos , Vacunas contra la Influenza , Gripe Aviar , MicroARNs , Fosfohidrolasa PTEN , Estrés Fisiológico , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pollos/virología , Vacunas contra la Influenza/inmunología , Gripe Aviar/virología , Gripe Aviar/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Tolerancia Inmunológica , Transducción de Señal , Virus de la Influenza A/inmunología
15.
Am J Transl Res ; 16(4): 1209-1218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715817

RESUMEN

OBJECTIVE: This randomized clinical trial aimed to investigate the clinical efficacy of combining a medial superior malleolar perforator flap from the posterior tibial artery (PTAPF) with a vacuum-assisted closure (VAC) dressing for skin and soft tissue defects in the Achilles tendon area. METHODS: Twenty-eight patients were randomly divided into two equally sized groups: the control group received treatment with a medial superior malleolar perforator flap, while the experimental group was treated with a perforator flap from the posterior tibial artery in combination with a VAC dressing. Perioperative data, including average operative time, intraoperative blood loss, intraoperative complications, time to ambulation, and hospital stay after surgery, were recorded. Clinical outcomes were assessed based on the time to first weight-bearing walking, time to full weight-bearing activity, Visual Analog Scale (VAS) score, American Orthopaedic Foot and Ankle Society hindfoot and ankle score, and the range of motion for ankle plantar flexion. RESULTS: The patients were monitored for 3-12 months (average, 8.5), and it was observed that the flaps remained stable without enlargement, and their texture and color were similar to the surrounding tissue. Significantly enhanced postoperative indices were noted in the experimental group compared to the control group (P<0.05). CONCLUSION: The medial superior malleolar perforator flap from the posterior tibial artery, especially when combined with a VAC dressing, proves to be an effective method for repairing medium-sized skin defects in the Achilles tendon area. This approach offers several benefits, including a reliable blood supply, simplicity of the procedure, decreased damage to the donor site, improved aesthetic outcomes, and fewer postoperative complications.

16.
Pharmacol Biochem Behav ; 240: 173788, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734150

RESUMEN

Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.


Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Hipocampo , Plasticidad Neuronal , Efectos Tardíos de la Exposición Prenatal , Estimulación Magnética Transcraneal , Ácido Valproico , Animales , Ácido Valproico/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratas , Trastorno Autístico/terapia , Trastorno Autístico/inducido químicamente , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias/terapia , Conducta Animal/efectos de los fármacos
17.
J Hazard Mater ; 474: 134705, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805812

RESUMEN

Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.


Asunto(s)
Anticuerpos Monoclonales , Haptenos , Herbicidas , Herbicidas/análisis , Haptenos/química , Haptenos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Límite de Detección , Oryza/química , Animales , Contaminantes Químicos del Agua/análisis , Cromatografía de Afinidad/métodos , Oro Coloide/química , Ratones , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
18.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1523-1535, 2024 May 25.
Artículo en Chino | MEDLINE | ID: mdl-38783813

RESUMEN

The adoptive immunotherapy mediated by tumor-infiltrating lymphocytes (TILs) has shown definite efficacy against various solid tumors. However, the inefficiency of the conventional method based on in vitro expansion of TILs fails to achieve the cell count and high tumor-killing activity required for therapeutic purposes. This study investigated the effect of 3D tumor spheroids on the activation and expansion of TILs in vitro, aiming to provide a novel approach for the expansion of TILs. We procured TILs and primary tumor cells from surgical samples of lung cancer patients and then compared the impacts of lung cancer cell line NCI-H1975 and primary lung cancer cells cultured under 2D and 3D conditions on the activation, expansion, and anti-tumor activity of TILs. Furthermore, we added the programmed cell death protein 1 (PD-1) antibody into the co-culture of primary tumor cells and TILs within a 3D environment to assess the effects of the antibody on TILs. The results showed that compared with 2D cultured tumor cells, the 3D cultured H1975 cells significantly enhanced the expansion of TILs, increasing the proportion of CD3+/CD8+ cells in TILs to 61.6%. The 3D primary tumor model also enhanced the proportion of CD3+/CD8+ cells in TILs (45.5%, 54.4%), induced apoptosis of tumor epithelial cells and decreased the overall tumor cells survival rate (16.7%) after co-culture. PD-1 antibodies further improved the in vitro expansion capacity of TILs mediated by 3D tumor spheroids, resulting in the proportions of 50.9% and 57.0% for CD3+/CD8+ cells and enhancing the antitumor activity significantly (reducing the overall tumor survival rate to 9.36%). In summary, the use of 3D tumor spheroids significantly promoted the expansion and improved the anti-tumor effect of TILs, and the use of the PD-1 antibody further promoted the expansion and tumor-killing effect of TILs.


Asunto(s)
Neoplasias Pulmonares , Linfocitos Infiltrantes de Tumor , Esferoides Celulares , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Esferoides Celulares/inmunología , Línea Celular Tumoral , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Receptor de Muerte Celular Programada 1/inmunología , Inmunoterapia Adoptiva , Técnicas de Cocultivo , Técnicas de Cultivo de Célula , Células Tumorales Cultivadas , Proliferación Celular
19.
Nat Commun ; 15(1): 3382, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643164

RESUMEN

Cancer models play critical roles in basic cancer research and precision medicine. However, current in vitro cancer models are limited by their inability to mimic the three-dimensional architecture and heterogeneous tumor microenvironments (TME) of in vivo tumors. Here, we develop an innovative patient-specific lung cancer assembloid (LCA) model by using droplet microfluidic technology based on a microinjection strategy. This method enables precise manipulation of clinical microsamples and rapid generation of LCAs with good intra-batch consistency in size and cell composition by evenly encapsulating patient tumor-derived TME cells and lung cancer organoids inside microgels. LCAs recapitulate the inter- and intratumoral heterogeneity, TME cellular diversity, and genomic and transcriptomic landscape of their parental tumors. LCA model could reconstruct the functional heterogeneity of cancer-associated fibroblasts and reflect the influence of TME on drug responses compared to cancer organoids. Notably, LCAs accurately replicate the clinical outcomes of patients, suggesting the potential of the LCA model to predict personalized treatments. Collectively, our studies provide a valuable method for precisely fabricating cancer assembloids and a promising LCA model for cancer research and personalized medicine.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microambiente Tumoral , Organoides/patología , Medicina de Precisión/métodos
20.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 68-76, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678625

RESUMEN

An accurate and non-invasive diagnosis of the clinical stage is critical for effectively managing liver cirrhosis. This study aimed to identify serum metabolite biomarkers and clinical features that may reliably predict high-risk cirrhosis. This cross-sectional study recruited 94 cirrhotic patients (70 for identification cohort, 24 for validation cohort) from Minhang Hospital Affiliated with Fudan University between 2018 and 2021, who were analyzed by targeted quantitative metabolomics technique. Baseline clinical characteristics were collected, and different stage cirrhosis classification was performed according to the presence or absence of decompensated events. Potential metabolite biomarkers were screened, and a model for predicting the decompensation stage was created. Finally, the incidence of decompensated outcomes was analyzed. A total of 560 metabolites were detected in the identification cohort. Indole-3-propionic acid (IPA) was the most significantly decreased metabolic biomarker in the decompensated group (P<0.01, |log2FC| >2), having the strongest correlation with hyaluronic acid (r=-0.50, P<0.01). It also performed well for differentiating decompensated cirrhosis with an area under the curve (AUC) of 0.79(0.75 at internal validation). Another diagnostic model consisting of indole-3-propionic acid, hemoglobin, and albumin showed better predictive performance with an AUC of 0.97 (0.91 at internal validation). Also, 31 (44.29%) patients developed decompensated events at a median follow-up of 22.76±15.24 months. The cumulative incidence of decompensated events based on IPA subgroups (IPA <39.67ng/ml and ≥39.67ng/ml) showed a significant difference (P<0.01). "Indole-3-propionic acid" and a diagnostic model of hemoglobin and albumin can non-invasively identify cirrhotic populations at risk for decompensation, aiding in future management of liver cirrhosis.


Asunto(s)
Biomarcadores , Cirrosis Hepática , Metabolómica , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Metabolómica/métodos , Biomarcadores/sangre , Estudios Transversales , Anciano , Metaboloma , Curva ROC , Indoles , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...