Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973563

RESUMEN

Anthropogenic activities have raised nitrogen (N) input worldwide with profound implications for soil carbon (C) cycling in ecosystems. The specific impacts of N input on soil organic matter (SOM) pools differing in microbial availability remain debatable. For the first time, we used a much-improved approach by effectively combining the 13C natural abundance in SOM with 21 years of C3-C4 vegetation conversion and long-term incubation. This allows to distinguish the impact of N input on SOM pools with various turnover times. We found that N input reduced the mineralization of all SOM pools, with labile pools having greater sensitivity to N than stable ones. The suppression in SOM mineralization was notably higher in the very labile pool (18%-52%) than the labile and stable (11%-47%) and the very stable pool (3%-21%) compared to that in the unfertilized control soil. The very labile C pool made a strong contribution (up to 60%) to total CO2 release and also contributed to 74%-96% of suppressed CO2 with N input. This suppression of SOM mineralization by N was initially attributed to the decreased microbial biomass and soil functions. Over the long-term, the shift in bacterial community toward Proteobacteria and reduction in functional genes for labile C degradation were the primary drivers. In conclusion, the higher the availability of the SOM pools, the stronger the suppression of their mineralization by N input. Labile SOM pools are highly sensitive to N availability and may hold a greater potential for C sequestration under N input at global scale.


Asunto(s)
Carbono , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Carbono/metabolismo , Carbono/análisis , Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Biomasa
2.
J Environ Manage ; 354: 120498, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417361

RESUMEN

Liming, as a common amelioration practice worldwide, has the potential to alleviate soil acidification and ensure crop production. However, the impacts of long-term liming on the temperature sensitivity (Q10) of soil organic carbon (SOC) mineralization and its response to labile C input remain unclear. To fill the knowledge gap, soil samples were collected from a long-term (∼10 years) field trial with unlimed and limed (CaO) plots. These soil samples were incubated at 15 °C and 25 °C for 42 days, amended without and with 13C-labeled glucose. Results showed that compared to the unlimed soil (3.6-8.6 mg C g-1 SOC), liming increased SOC mineralization (6.1-11.2 mg C g-1 SOC). However, liming significantly mitigated the positive response of SOC mineralization to warming, resulting in a lower Q10. Long-term liming increased bacterial richness and Shannon diversity as well as their response to warming which were associated with the decreased Q10. Furthermore, the decreased Q10 due to liming was attributed to the decreased response of bacterial oligotrophs/copiotrophs ratio, ß-glucosidase and xylosidase activities to warming. Labile C addition had a strong impact on Q10 in the unlimed soil, but only a marginal influence in the limed soil. Overall, our research highlights that acidification amelioration by long-term liming has the potential to alleviate the positive response of SOC mineralization to warming and labile C input, thereby facilitating SOC stability in agroecosystems, especially for acidic soils in subtropical regions.


Asunto(s)
Compuestos de Calcio , Carbono , Suelo , Microbiología del Suelo , Óxidos
3.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672222

RESUMEN

Increased soil nutrient availability can promote tree growth while drought impairs metabolic functioning and induces tree mortality. However, limited information is available about the role of nutrients in the drought responses of trees. A greenhouse experiment was conducted with sessile oak (Quercus petraea (Matt.) Liebl) and Scots pine (Pinus sylvestris L.) seedlings, which were subjected to three fertilization treatments in the first year and two water regimes in the second year. Old and newly fixed carbon (C) and nitrogen (N) allocation were traced by dual labeling with 13C and 15N tracers, respectively, at two time points. Leaf gas exchange, biomass, as well as N and nonstructural carbohydrate (NSC) concentrations of all organs were measured. Fertilization predisposed sessile oak to drought-induced mortality, mainly by prioritizing aboveground growth, C and N allocation, reducing root NSC concentrations and decreasing old C contribution to new growth of leaves. In contrast, fertilization did not additionally predispose Scots pine to drought, with minor effects of fertilization and drought on newly fixed and old C allocation, tissues N and NSC concentrations. The role of nutrients for drought responses of trees seems to be species-specific. Therefore, we suggest nutrient availability and species identity to be considered in the framework of physiological mechanisms affecting drought-induced mortality.


Asunto(s)
Pinus sylvestris , Quercus , Plantones/fisiología , Isótopos de Carbono/metabolismo , Quercus/fisiología , Pinus sylvestris/fisiología , Sequías , Isótopos de Nitrógeno , Árboles/fisiología , Nutrientes
4.
Ecol Appl ; 34(1): e2807, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36691856

RESUMEN

Many terrestrial ecosystems are co-invaded by multiple exotic species. The "invasional meltdown" hypothesis predicts that an initial invasive species will facilitate secondary invasions. In the plant kingdom, the potential underlying mechanisms of this hypothesis may be that modification of the soil properties by the initial invaders benefits for the subsequent exotic species invasion. In this study, we analyzed the composition of soil microbial communities and soil chemical properties from sites invaded by woody Rhus typhina, as well as uninvaded sites, to assess the impact of R. typhina invasion. Furthermore, we conducted a greenhouse experiment with multiple native-invasive pairs of herbaceous species to test whether R. typhina invasion facilitates subsequent exotic herb invasion. Our results showed that R. typhina invasion significantly altered the composition of soil fungal communities, especially pathogenic, endophytic, and arbuscular mycorrhizal fungi. However, this change in microbial composition led to neither direction nor magnitude changes in negative plant-soil feedback effects on both native and invasive species. This indicates that initial R. typhina invasion does not facilitate subsequent herb invasion, which does not support the "invasional meltdown" hypothesis. Additionally, R. typhina invasion significantly decreased soil total nitrogen and organic carbon contents, which may explain the significantly lower biomass of herbaceous roots grown in invaded soils compared with uninvaded soils. Alternately, although invasive herb growth was significantly more inhibited by soil microbiota compared with native herb growth, such inhibition cannot completely eliminate the risk of exotic herb invasion because of their innate growth advantages. Therefore, microbial biocontrol agents for plant invasion management should be combined with another approach to suppress the innate growth advantages of exotic species.


Asunto(s)
Microbiota , Micorrizas , Suelo/química , Micorrizas/fisiología , Madera , Biomasa , Especies Introducidas , Microbiología del Suelo
5.
Discov Nano ; 18(1): 128, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845558

RESUMEN

Silicon carbide (SiC) PiN diode has shown substantial promise as the freewheel diode for switch protection in a pulsed system. In this paper, we investigate the carrier lifetime (τ) modulation on pulsed current capability of SiC PiN diodes. The carrier lifetime in 4H-SiC is modulated by the generation of the Z1/2 center through neutron irradiation. Surprisingly, we found that the pulsed current of SiC PiN diodes shows a limited improvement when the carrier lifetime (τ) increases from 0.22 to 1.3 µs, while is significantly promoted as the carrier lifetime increases from 0.03 to 0.22 µs. This changing trend is obviously different from the on-state resistance, which decreases with the increased carrier lifetime. The simulation result indicates that the heat generation (i.e., maximum temperature rise) inside the PiN diodes, especially in the drift layer, is remarkably aggravated in the pulse tests for τ < 0.1 µs, but which is significantly suppressed as carrier lifetime rises to 0.2 µs and above. Therefore, the dependence of pulsed current on carrier lifetime is ascribed to the heat generation resulting from the carrier lifetime controlled conductivity modulation effect, which hence affects the temperature rise and brings about the failure of SiC PiN diodes under high pulsed current.

6.
J Mater Chem B ; 11(35): 8519-8527, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37606203

RESUMEN

Survival and infection of pathogenic bacteria, such as Staphylococcus aureus (S. aureus), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal-organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus. The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus, leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 103-1.05 × 107 CFU mL-1 and a detection limit of 12 CFU mL-1. Due to the unique high affinity of VAN to S. aureus, the nanoprobe shows high selectivity and sensitivity to S. aureus, even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.


Asunto(s)
Estructuras Metalorgánicas , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Transferencia Resonante de Energía de Fluorescencia , Fluoresceína-5-Isotiocianato , Infecciones Estafilocócicas/diagnóstico por imagen , Vancomicina , Fluoresceína
7.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517987

RESUMEN

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Cambio Climático , China
8.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839098

RESUMEN

Dandelion-like CuCo2O4 nanoflowers (CCO NFs) with ultrathin NiMn layered double hydroxide (LDH) shells were fabricated via a two-step hydrothermal method. The prepared CuCo2O4@NiMn LDH core/shell nanoflowers (CCO@NM LDH NFs) possessed a high specific surface area (~181 m2·g-1) with an average pore size of ~256 nm. Herein, the CCO@NM LDH NFs exhibited the typical battery-type electrode material with a specific capacity of 2156.53 F·g-1 at a current density of 1 A·g-1. With the increase in current density, the rate capability retention was 68.3% at a current density of 10 A·g-1. In particular, the 94.6% capacity of CCO@NM LDH NFs remains after 2500 cycles at 5 A·g-1. An asymmetric supercapacitor (ASC) with CCO@NM LDH NFs//activated carbon (AC) demonstrates a remarkable capacitance of 303.11 F·g-1 at 1 A·g-1 with excellent cycling stability. The coupling and synergistic effects of multi-valence transition metals provide a convenient channel for the electrochemical process, which is beneficial to spread widely within the realm of electrochemical energy storage.

9.
Chem Commun (Camb) ; 59(22): 3301-3304, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36846958

RESUMEN

Herein, we report a simple and highly efficient approach for simultaneous in situ synthesis of Cu nanoparticles on Mg-Al-LDH (in situ reduced CuMgAl-LDH) from Cu-Mg-Al ternary LDH and catalytic transfer hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) using isopropanol (2-PrOH) as a reducing agent and hydrogen source. The in situ reduced CuMgAl-LDH, especially Cu1.5Mg1.5Al1-LDH as a precursor, offered excellent performance for the catalytic transfer hydrogenation of FAL to FOL (achieving almost full conversion with 98.2% selectivity of FOL). Strikingly, the in situ reduced catalyst was robust and stable with a wide scope in the transfer hydrogenation of various biomass-derived carbonyl compounds.

10.
Sci Total Environ ; 874: 162472, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36842587

RESUMEN

Human activities have changed the levels and ratios of nitrogen (N) and phosphorus (P) in wetland ecosystems. However, the effects of N and P levels and ratios on wetland soil microbial community and ecosystem multifunctionality remain unclear, especially on the relationships between soil microbial diversity and ecosystem multifunctionality. In this study, the effects of a 7-year experimental nutrient addition on the soil microbial community and ecosystem multifunctionality (12 function variables related to carbon, N, and P cycling) were assessed by combining three N and P supply levels with three N:P supply ratios in a coastal nontidal wetland ecosystem. According to the obtained results, the N and P supply levels significantly affected soil bacterial community composition, as well as ecosystem multifunctionality, while no significant effects of N:P supply ratios were observed. Although N and P supply levels did not significantly affect bacterial and fungal diversity, they both changed the complexity of bacterial and fungal networks. Soil ecosystem multifunctionality was significantly and positively correlated with bacterial diversity rather than fungal diversity. Moreover, the correlation coefficient between bacterial diversity and ecosystem multifunctionality showed an increasing-decreasing trend with increasing N and P supply levels and an increasing trend with increasing N:P supply ratios. However, the correlation coefficient between bacterial diversity and ecosystem multifunctionality was not significantly correlated with bacterial network complexity. The current study provides new insights into the impacts of N and P levels and ratios on soil microbial community and ecosystem multifunctionality in a coastal nontidal wetland. In particular, the present study highlighted that changes in N and P supply levels and ratios lead to changes in the relationship between soil bacterial diversity and ecosystem multifunctionality, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to N and P inputs in coastal nontidal wetlands.


Asunto(s)
Ecosistema , Microbiota , Humanos , Humedales , Suelo , Nitrógeno/análisis , Fósforo , Microbiología del Suelo , Bacterias
11.
Natl Sci Rev ; 9(12): nwac165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36519072

RESUMEN

Resources can affect plant productivity and biodiversity simultaneously and thus are key drivers of their relationships in addition to plant-plant interactions. However, most previous studies only focused on a single resource while neglecting the nature of resource multidimensionality. Here we integrated four essential resources for plant growth into a single metric of resource diversity (RD) to investigate its effects on the productivity-biodiversity relationship (PBR) across Chinese grasslands. Results showed that habitats differing in RD have different PBRs-positive in low-resource habitats, but neutral in medium- and high-resource ones-while collectively, a weak positive PBR was observed. However, when excluding direct effects of RD on productivity and biodiversity, the PBR in high-resource habitats became negative, which leads to a unimodal instead of a positive PBR along the RD gradient. By integrating resource effects and changing plant-plant interactions into a unified framework with the RD gradient, our work contributes to uncovering underlying mechanisms for inconsistent PBRs at large scales.

12.
Sci Total Environ ; 846: 157408, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850345

RESUMEN

Model predictions indicate that extreme drought events will occur more frequently by the end of this century, with major implications for terrestrial ecosystem functions such as plant productivity and soil respiration. Previous studies have shown that drought-induced ethylene produced by plants is a key factor affecting plant growth and development, but the impact of drought-induced ethylene on ecosystem functions in natural settings has not yet been tested. Here, we reduced the amount of plant-derived ethylene concentrations by adding the ethylene inhibitor aminoethoxyvinylglycine (AVG), and investigated in situ plant productivity, soil respiration and ethylene concentrations for two years in a semi-arid temperate grassland in Inner Mongolia, China. Drought significantly reduced plant productivity and soil respiration, but the application of AVG reduced ethylene concentrations and significantly increased aboveground plant productivity and soil respiration, effectively enhancing resistance to drought. The reason for this could be that AVG application increased the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and abundance of the acdS gene (the key gene for ACC deaminase), facilitating reduced ACC concentrations in the plant tissue and reduced in planta ethylene synthesis. In addition, there was a significant correlation between soil ACC deaminase activity and plant productivity. Given the global distribution of arid and semi-arid areas, and the expected increases in the frequency and intensity of drought stress, this is a significant concern. These results provide novel evidence of the impact of drought-induced plant ethylene production on ecosystem functions in semi-arid temperate grassland ecosystems.


Asunto(s)
Sequías , Ecosistema , Etilenos , Pradera , Plantas , Suelo
13.
Front Microbiol ; 13: 844663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651488

RESUMEN

Nitrous oxide (N2O) is a powerful greenhouse gas and the predominant stratospheric ozone-depleting substance. Soil is a major source of N2O but remains largely uncertain due to the complicated processes of nitrification and denitrification performed by various groups of microbes such as bacteria, fungi, and archaea. We used incubation experiments to measure the total fungal, archaeal, and bacterial N2O production potential and the microbial functional genes in soils along 3,000 km Chinese grassland transect, including meadow steppe, typical steppe, desert steppe, alpine meadow, and alpine steppe. The results indicated that fungi, archaea, and bacteria contributed 25, 34, and 19% to nitrification and 46, 29, and 15% to denitrification, respectively. The AOA and AOB genes were notably correlated with the total nitrification enzyme activity (TNEA), whereas both narG and nirK genes were significantly correlated with total denitrification enzyme activity (TDEA) at p < 0.01. The correlations between AOA and ANEA (archaeal nitrification enzyme activity), AOB and BNEA (bacterial nitrification enzyme activity), and narG, nirK, and BDEA (bacterial denitrification enzyme activity) showed higher coefficients than those between the functional genes and TNEA/TDEA. The structural equation modeling (SEM) results showed that fungi are dominant in N2O production processes, followed by archaea in the northern Chinese grasslands. Our findings indicate that the microbial functional genes are powerful predictors of the N2O production potential, after distinguishing bacterial, fungal, and archaeal processes. The key variables of N2O production and the nitrogen (N) cycle depend on the dominant microbial functional groups in the N-cycle in soils.

14.
Ying Yong Sheng Tai Xue Bao ; 33(3): 623-628, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35524512

RESUMEN

With the increases in the breadth and depth of the impacts of climate change, the theories of ecosystem vulnerability, adaptability and catastrophe have gradually been widely applied in the field of ecology to explore and evaluate the sensitivity, vulnerability and adaptation of various ecosystems to climatic change. Based on such research, we can seek better ways to cope with the far-reaching impact of climatic change on ecosystems, and serve the sustainable management of national ecosystems and the construction of ecological security. Although a lot of achievements have been made to distinguish the sensitive regions responding to climatic change and potential tipping points in certain ecosystems, there are still multiple understandings and interpretations of these concepts in the academic community. To some extent, this affects the further development and application of related theories in ecological studies. Therefore, we combed the development history of related concepts, and analyzed the connotation of these concepts from the perspective of ecosystem ecology. Furthermore, we proposed a theoretical framework for ecosystem fragility, adaptability, and catastrophe based on the ecosystem evolution theory and corresponding calculation methods in order to promote the in-depth development of theories of ecosystem fragility, adaptability and catastrophe.


Asunto(s)
Cambio Climático , Ecosistema , Aclimatación
15.
Nat Commun ; 13(1): 2681, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562338

RESUMEN

The Tibetan Plateau's Kobresia pastures store 2.5% of the world's soil organic carbon (SOC). Climate change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization accounting for the other third, and confirmed these results by comparison with a meta-analysis of 594 observations. The microbial community responded to the degradation through altered taxonomic composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a severe shift in microbial functioning. This may irreversibly alter the world´s largest alpine pastoral ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local food security, regional water quality and climate.


Asunto(s)
Pradera , Microbiota , Carbono/análisis , Ecosistema , Nitrógeno/análisis , Suelo , Microbiología del Suelo , Tibet
16.
Sci Total Environ ; 823: 153716, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149074

RESUMEN

Nitrogen (N) is a main nutrient limiting plant growth in most terrestrial ecosystems, but so far it remains unknown which role plant N uptake plays for the positive relationship between species richness and productivity. An in situ15N labeling experiment was carried out by planting four subtropical tree species (i.e., Koelreuteria bipinnata, Lithocarpus glaber, Cyclobalanopsis myrsinaefolia and Castanopsis eyrei) in pots, at richness levels 1, 2 and 4 species per pot. Plant N uptake preference for inorganic N form of NO3- to NH4+ and organic N form of glycine, as well as biomass and plant functional traits was evaluated under different tree species richness level. Overall, pot biomass productivity increased with tree species richness. Biomass of the most productive species, K. bipinnata increased, but not at the expense of a decreased growth of the other species. In mixtures, the species shifted their preference for the inorganic N form, from NO3- to NH4+ or vice versa. The uptake preference for glycine remained stable along the species richness gradient. Plant N uptake was well correlated with numerous functional traits, both aboveground, such as height and shoot diameter, and belowground, such as root diameter and root length. We conclude that increased ecosystem biomass production with tree species richness could be largely explained by niche partitioning in N uptake among tree species. Our findings highlight that niche partitioning for N uptake should be a possible important mechanism maintaining species diversity and ecosystem production in subtropical forests.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Biomasa , Nitrógeno
18.
Ecol Evol ; 11(22): 16021-16033, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824808

RESUMEN

Permafrost is experiencing climate warming at a rate that is two times faster than the rest of the Earth's surface. However, it is still lack of a quantitative basis for predicting the functional stability of permafrost ecosystems in carbon (C) and nutrient cycling. We compiled the data of 708 observations from 89 air-warming experiments in the Northern Hemisphere and characterized the general effects of temperature increase on permafrost C exchange and balance, biomass production, microbial biomass, soil nutrients, and vegetation N dynamics through a meta-analysis. Also, an investigation was made on how responses might change with habitat-specific (e.g., plant functional groups and soil moisture status) conditions and warming variables (e.g., warming phases, levels, and timing). The net ecosystem C exchange (NEE) was found to be downregulated by warming as a result of a stronger sensitivity to warming in respiration (15.6%) than in photosynthesis (6.2%). Vegetation usually responded to warming by investing more C to the belowground, as belowground biomass increased much more (30.1%) than aboveground biomass (2.9%). Warming had a minor effect on microbial biomass. Warming increased soil ammonium and nitrate concentrations. What's more, a synthesis of 70 observations from 11 herbs and 9 shrubs revealed a 2.5% decline of N in green leaves. Compared with herbs, shrubs had a stronger response to respiration and had a decline in green leaf N to a greater extent. Not only in dry condition did green leaf N decline with warming but also in wet conditions. Warming in nongrowing seasons would negatively affect soil water, C uptake, and biomass production during growing seasons. Permafrost C loss and vegetation N decline may increase with warming levels and timing. Overall, these findings suggest that besides a positive C cycling-climate feedback, there will be a negative feedback between permafrost nutrient cycling and climate warming.

19.
Nanoscale Res Lett ; 16(1): 141, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508306

RESUMEN

In this paper, the effect of ultraviolet (UV) irradiation on the static characteristics of high voltage 4H-SiC PiN is investigated. No significant change is observed in the forward on state characteristic of 4H-SiC PiN diodes before and after ultraviolet light irradiation. However, it is found that the blocking voltage is significantly increased with UV irradiation, which is resulted from the depletion region width extension with the collection of positive charges under the increase of the surface negative charge density. The deep level transient spectroscopy reveals that the UV irradiation induced deep-level defects play a dominant role over the trapped negative charges, and therefore leads to the increase of blocking voltage of 4H-SiC PiN Diodes.

20.
Chemistry ; 27(49): 12659-12666, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34111323

RESUMEN

Both one-pot catalytic conversion of furfural (FAL) to isopropyl levulinate (PL) and carbonization of by-product (humins) for electromagnetic wave absorption are discussed, which provides inspiration that humins can be applied to electromagnetic wave absorption. In the former, phosphotungstic acid (PW) is employed as a homogeneous catalyst to convert FAL to PL via a tandem reaction in one pot, with the formation of a vast amount of humins. With FAL and various intermediates as substrates, it was found that humins was a polymerization product of FAL, furfuryl alcohol (FOL) and furfuryl ester (FE) with furan rings. In addition, the in situ attenuated total reflection infrared (ATR-IR) spectra also provided a basis for the proposed reaction route. In the latter, with the humins as raw material, P species and WO3 doped nano-porous carbon (Humins-700) platform formed after high-temperature annealing is used for electromagnetic wave absorption and manifests desirable absorption performance. The minimum reflection loss (RLmin ) value is -47.3 dB at 13.0 GHz with a thickness of 2.0 mm and the effective absorption bandwidth reaches 4.5 GHz (11.2-5.7 GHz).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA