Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39057677

RESUMEN

To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.

2.
Cytotherapy ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38904585

RESUMEN

Despite the potential of mesenchymal stromal cells (MSCs) in osteoarthritis (OA) treatment, the challenge lies in addressing their therapeutic inconsistency. Clinical trials revealed significantly varied therapeutic outcomes among patients receiving the same allogenic MSCs but different treatment regimens. Therefore, optimizing personalized treatment strategies is crucial to fully unlock MSCs' potential and enhance therapeutic consistency. We employed the XGBoost algorithm to train a self-collected database comprising 37 published clinical reports to create a model capable of predicting the probability of effective pain relief and Western Ontario and McMaster Universities (WOMAC) index improvement in OA patients undergoing MSC therapy. Leveraging this model, extensive in silico simulations were conducted to identify optimal personalized treatment strategies and ideal patient profiles. Our in silico trials predicted that the individually optimized MSC treatment strategies would substantially increase patients' chances of recovery compared to the strategies used in reported clinical trials, thereby potentially benefiting 78.1%, 47.8%, 94.4% and 36.4% of the patients with ineffective short-term pain relief, short-term WOMAC index improvement, long-term pain relief and long-term WOMAC index improvement, respectively. We further recommended guidelines on MSC number, concentration, and the patients' appropriate physical (body mass index, age, etc.) and disease states (Kellgren-Lawrence grade, etc.) for OA treatment. Additionally, we revealed the superior efficacy of MSC in providing short-term pain relief compared to platelet-rich plasma therapy for most OA patients. This study represents the pioneering effort to enhance the efficacy and consistency of MSC therapy through machine learning applied to clinical data. The in silico trial approach holds immense potential for diverse clinical applications.

3.
Brain Sci ; 14(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38790420

RESUMEN

The brain is complex and metabolically active, and the detection of metabolites plays an important role in brain development and diseases. Currently, there is a lack of research on the metabolic spectrum changes in learning and memory impairment, and hippocampal damage induced by microwave radiation from the metabolic perspective. Aiming to provide sensitive indicators for microwave radiation-induced brain damage and establish a foundation for understanding its injury mechanisms, this study employed non-targeted metabolomics to investigate metabolic fluctuations and key metabolic pathway alterations in rats' hippocampal tissue after microwave radiation. The memory and spatial exploration abilities of rats decreased after radiation. The postsynaptic densities were thickened in the MW group. The cholesterol sulfate, SM(d16:1/24:1(15Z)), and linoelaidylcarnitine were significantly increased after radiation, whereas etrahydrocorticosterone, L-phenylalanine, and histamine were significantly decreased after radiation. These metabolites were enriched in signaling pathways related to the inflammatory mediator regulation of transient receptor potential (TRP) channels, neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis. These findings indicate that microwave radiation causes spatial learning and memory dysfunction in rats and structural damage to hippocampal tissue.

4.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 1022-1033, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818581

RESUMEN

Cetuximab (CET), a human murine chimeric IgG monoclonal antibody and an inhibitor of epidermal growth factor receptor (EGFR), has been shown to be effective in treating various types of cancer. However, its use is hindered by limitations such as resistance development, variability in patient response, side effects, and challenges in biomarker identification. Therefore, CET is often combined with other targeted therapies or chemotherapies to enhance its effectiveness. In this study, we investigate the anticancer effects and underlying mechanisms of the combination of CET, an EGFR inhibitor, and STA9090, an inhibitor of heat shock protein 90 (Hsp90), in both in vitro and in vivo models of non-small cell lung cancer (NSCLC). The results demonstrate significantly stronger effects on NSCLC cells in response to combination therapy than to treatment with either agent alone, indicating that the combination of CET and STA9090 has potential synergistic effects. Additionally, the combination therapy inhibits tumor growth in a xenograft nude mouse model more effectively than treatment with either agent alone, suggesting improved efficacy when used together. Furthermore, the synergistic effects of the combination therapy are likely due to inactivation of the receptor tyrosine kinase (RTK) pathway, which is overly activated in cancer and contributes to tumor growth, angiogenesis, and metastasis. Consequently, our findings suggest that STA9090 has potent direct antitumor activity and synergizes with CET against NSCLC tumors. It is highly likely that these synergistic effects are mediated through RTK pathway inactivation caused by the combination. Therefore, our findings strongly and consistently support the potential synergistic effect of STA9090, an RTK inhibitor, in combination with EGFR-targeting agents.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cetuximab , Sinergismo Farmacológico , Neoplasias Pulmonares , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Ratones , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ratones Endogámicos BALB C , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
5.
Cell Oncol (Dordr) ; 47(4): 1405-1423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38568419

RESUMEN

PURPOSE: The hyperactivation of epidermal growth factor receptor (EGFR) plays a crucial role in non-small cell lung cancer (NSCLC). Hedgehog (Hh) signaling has been implicated in the tumorigenesis and progression of various cancers, however, its function in NSCLC cells remains controversial. Herein, we present a novel finding that challenges the current understanding of Hh signaling in tumor growth. METHODS: Expression of Hh ligands and receptor were assessed using TCGA datasets, immunoblotting and immunohistochemical. Biological function of Hh ligands and receptor in NSCLC were tested using colony formation, cell count kit-8 (CCK-8) and xenograft assays. Biochemical effect of Hh ligands and receptor on regulating EGFR stability and activity were checked via immunoblotting. RESULTS: Expression of Hh ligands and receptor was suppressed in NSCLC tissues, and the lower expression levels of these genes were associated with poor prognosis. Ptch1 binds to EGFR and facilitates its poly-ubiquitylation and degradation independent of downstream transcriptional signaling. Moreover, Hh ligands cooperate with Ptch1 to regulate the protein stability and activity of EGFR. This unique mechanism leads to a suppressive effect on NSCLC tumor growth. CONCLUSION: Non-canonical Hh signaling pathway, involving cooperation between Hh ligands and their receptor Ptch1, facilitates the degradation of EGFR and attenuates its activity in NSCLC. These findings provide novel insights into the regulation of EGFR protein stability and activity, offer new diagnostic indicators for molecular typing of NSCLC and identify potential targets for targeted therapy of this challenging disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Proteínas Hedgehog , Neoplasias Pulmonares , Estabilidad Proteica , Transducción de Señal , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ligandos , Animales , Línea Celular Tumoral , Transducción de Señal/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica , Femenino , Proliferación Celular/genética , Ubiquitinación , Masculino
6.
Nat Commun ; 15(1): 2798, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555365

RESUMEN

Recent rapid Arctic sea ice loss was documented as combined results from anthropogenic forcing and climate system internal variability. However, the role of internal variability is not well understood. Here, we propose that the Asian-Pacific Oscillation (APO), an intrinsic atmospheric mode featuring out-of-phase variations in upper-tropospheric temperatures between Asia and the North Pacific, is one driver for autumn sea ice variability in the eastern Arctic. The positive summer APO favors warming of the mid-latitude North Atlantic sea surface temperatures. This warming persists to autumn and in turn triggers strong anticyclonic anomalies over the Barents-Kara-Laptev Seas and weak lower-tropospheric cyclonic anomalies over the East Siberian Sea, enhancing moisture transport into the eastern Arctic. Such changes consequently increase lower-tropospheric humidity, downwelling longwave radiation, and surface air temperature in the eastern Arctic, thereby melting sea ice. Hence, a recent tendency of the summer APO towards the positive phase accelerates autumn sea ice loss in the eastern Arctic.

7.
J Cell Physiol ; 239(5): e31250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477420

RESUMEN

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Asunto(s)
Ferroptosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Animales , Humanos , Masculino , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Línea Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Ferroptosis/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , FN-kappa B/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Transducción de Señal , Pirimidinas/farmacología , Pirroles/farmacología
8.
Environ Res ; 249: 118236, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266893

RESUMEN

Excessive noise exposure presents significant health risks to humans, affecting not just the auditory system but also the cardiovascular and central nervous systems. This study focused on three male macaque monkeys as subjects. 90 dB sound pressure level (SPL) pure tone exposure (frequency: 500Hz, repetition rate: 40Hz, 1 min per day, continuously exposed for 5 days) was administered. Assessments were performed before exposure, during exposure, immediately after exposure, and at 7-, 14-, and 28-days post-exposure, employing auditory brainstem response (ABR) tests, electrocardiograms (ECG), and electroencephalograms (EEG). The study found that the average threshold for the Ⅴ wave in the right ear increased by around 30 dB SPL right after exposure (P < 0.01) compared to pre-exposure. This elevation returned to normal within 7 days. The ECG results indicated that one of the macaque monkeys exhibited an RS-type QRS wave, and inverted T waves from immediately after exposure to 14 days, which normalized at 28 days. The other two monkeys showed no significant changes in their ECG parameters. Changes in EEG parameters demonstrated that main brain regions exhibited significant activation at 40Hz during noise exposure. After noise exposure, the power spectral density (PSD) in main brain regions, particularly those represented by the temporal lobe, exhibited a decreasing trend across all frequency bands, with no clear recovery over time. In summary, exposure to 90 dB SPL noise results in impaired auditory systems, aberrant brain functionality, and abnormal electrocardiographic indicators, albeit with individual variations. It has implications for establishing noise protection standards, although the precise mechanisms require further exploration by integrating pathological and behavioral indicators.


Asunto(s)
Electrocardiografía , Electroencefalografía , Potenciales Evocados Auditivos del Tronco Encefálico , Ruido , Animales , Masculino , Ruido/efectos adversos , Macaca/fisiología
9.
Electromagn Biol Med ; 42(4): 150-162, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-38155529

RESUMEN

Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm2 for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (p < 0.01), increased AsAb levels (p < 0.05), decreased percentage of class A+B sperm (p < 0.01 or p < 0.05), increased sperm malformation (p < 0.01 or p < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (p < 0.01 or p < 0.05), increased MDA content (p < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (p < 0.01 or p < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.


Shortwave radiation has been used in communications, medical and military applications, and its damaging effects on several organs of the human body have been reported in the literature. However, the biological effects of shortwave radiation on the male reproductive system are unknown. The present study, by constructing an animal model of short-wave radiation and analyzing the experimental results, revealed that shortwave radiation could cause functional and structural damage to the reproductive organs of male rats, and that oxidative stress and key molecules in the calpain/Cdk5 pathway might be involved in this process. It will provide organizational data for further studies on the mechanisms of male reproductive damage by shortwave radiation.


Asunto(s)
Calpaína , Motilidad Espermática , Humanos , Ratas , Masculino , Animales , Calpaína/metabolismo , Calpaína/farmacología , Ratas Wistar , Semen/metabolismo , Testículo/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Espermatozoides/metabolismo , Superóxido Dismutasa/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA