Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Zhejiang Univ Sci B ; 24(3): 262-268, 2023 Mar 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-36916001

RESUMEN

Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Endometriales , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Estrógenos , ADN Helicasas
2.
Environ Geochem Health ; 45(7): 4867-4881, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36959429

RESUMEN

The use of solid fuels for heating and cooking in rural Northeast China has led to severe indoor metal element pollution in particulate matter (PM), posing a direct threat to human health and creating immense pressure on the sustainability of residential environments. To investigate the levels, sources, and potential health hazards of indoor metal element pollution in this region, we conducted a year-long sampling and monitoring campaign in actual residential settings and used ICP-OES to measure six metal elements (Mn, Cr, Zn, Cu, Pb, and Ni). This study's findings reveal that indoor metal element pollution levels in PM (33,513.65 mg/kg per year) are higher in rural Northeast China compared to other rural areas. Straw burning is the primary source of metal element pollution, followed by motor vehicle emissions and natural soil sources. It is crucial to note that our results indicate a total carcinogenic risk greater than 10-4 according to the US EPA health risk model assessment, highlighting the high risk posed to human health by indoor metal elements in rural areas. By using a seriously polluted area in Northeast China as a case study, this research provides initial insights into the characteristics and sources of indoor metal pollution in rural areas, offering a reference for future prevention and control of indoor pollution in these regions. Ultimately, this work can help improve the rural habitat and enhance the health of the rural population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Humanos , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Población Rural , Metales , China , Medición de Riesgo , Contaminantes Atmosféricos/análisis
3.
Inorg Chem ; 62(5): 2236-2243, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36689619

RESUMEN

Two zero-dimensional inorganic-organic hybrids, namely, [C4mim][Cd(TCDPPA)3] (1) and [C4mpy][Cd(TCDPPA)3] (2), where (TCDPPA)- = 2,2,2-trichloro-N-(di(pyrrolidin-1-yl)phosphoryl)acetamide, (C4mim)+ = 1-butyl-3-methylimidazolium, and (C4mpy)+ = 1-butyl-4-methylpyridinium, have been synthesized via metathesis reactions and characterized systematically. These ionic cadmium-containing inorganic-organic hybrid compounds are assembled from a bulky organic cation and a complex anion constructed from the chelation of three TCDPPA ligands to one cadmium ion. These compounds possess wide band gaps and emit in the deep-blue region intensely with a quantum yield as high as 34.04%. The success of this work provides a new method for the design and fabrication of high-efficiency blue-emitting materials.

4.
iScience ; 23(10): 101630, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33103072

RESUMEN

Understanding the mechanisms for cellular aging is a fundamental question in biology. Normal red blood cells (RBCs) survive for approximately 100 days, and their survival is likely limited by functional decline secondary to cumulative damage to cell constituents, which may be reflected in altered metabolic capabilities. To investigate metabolic changes during in vivo RBC aging, labeled cell populations were purified at intervals and assessed for abundance of metabolic intermediates using mass spectrometry. A total of 167 metabolites were profiled and quantified from cell populations of defined ages. Older RBCs maintained ATP and redox charge states at the cost of altered activity of enzymatic pathways. Time-dependent changes were identified in metabolites related to maintenance of the redox state and membrane structure. These findings illuminate the differential metabolic pathway usage associated with normal cellular aging and identify potential biomarkers to determine average RBC age and rates of RBC turnover from a single blood sample.

5.
Luminescence ; 35(7): 1142-1150, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32436363

RESUMEN

In this study, a rhodamine-acetylferrocene conjugate of RBFc was synthesized and then characterized using spectroscopy and single-crystal analysis. The chemosensor RBFc exhibited a marked colour change from colourless to pink after binding to Cu2+ ions. Importantly, under the presence of the other competing cations in aqueous solution, only Cu2+ ions caused spirolactam ring opening in rhodamine B in RBFc, resulting in an enhanced absorbance of ultraviolet light spectra and fluorescence spectra, as well as obvious shifts in cyclic voltammetry curves and differential pulsed voltammetry curves. The novel probe described in this manuscript provides an attractive approach for detecting Cu2+ in the presence of other multisignals.


Asunto(s)
Electroquímica , Colorantes Fluorescentes , Agua , Iones , Rodaminas , Espectrometría de Fluorescencia
6.
Proc Natl Acad Sci U S A ; 117(5): 2432-2440, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964827

RESUMEN

The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z dark-adapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to-Pg conversion as resulting from an out-of-plane rotation of the chromophore's peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantum-chemical calculations in the framework of multiscale modeling to rationalize the absorption maxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.


Asunto(s)
Proteínas Bacterianas/química , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Luz , Modelos Moleculares , Procesos Fotoquímicos , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad , Synechocystis/química , Synechocystis/metabolismo
7.
Dalton Trans ; 49(12): 3809-3815, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31820767

RESUMEN

A series of lanthanide diphosphonates, namely Ln(HL)(H2O)2 (Ln = Nd 1, Eu 2, Tb 3 and Er 4), have been synthesized from a semirigid diphosphonate ligand, (5-methyl-1,3-phenylene)bis(methylene)bisphosphonic acid (H4L). These lanthanide diphosphonates have been systematically characterized by using powder and single-crystal X-ray diffraction, elemental analysis, TGA, IR, UV-vis absorption and luminescence techniques. The single-crystal XRD measurements revealed that these compounds all have two-dimensional layered crystal structures. Among these four compounds, 1, 2 and 4 are isostructural and crystallize in the P21/c space group, whereas compound 3 crystallizes in the P21 space group. These compounds display the characteristic emissions of the respective lanthanide ions. The sensing properties of compound 3 were investigated which revealed that it could be used as a luminescent probe for Fe3+ and Cr2O72- with good selectivity and sensitivity.

8.
Transl Oncol ; 13(2): 372-382, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31887632

RESUMEN

INTRODUCTION: The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy. METHODS: In vitro cell culture and in vivo xenograft tumor therapy models and clinical sample studies are combined in studying the role of necroptosis in chemotherapy and mechanism of necroptosis suppression involving RIP3 expression regulation. RESULTS: While chemotherapeutic drugs were able to induce necroptotic cell death, this pathway was suppressed in lung cancer cells at least partly through downregulation of RIP3 expression. Ectopic RIP3 expression significantly sensitized lung cancer cells to the cytotoxicity of anticancer drugs such as cisplatin, etoposide, vincristine, and adriamycin. In addition, RIP3 suppression was associated with RIP3 promoter methylation, and demethylation partly restored RIP3 expression and increased chemotherapeutic-induced necroptotic cell death. In a xenograft tumor therapy model, ectopic RIP3 expression significantly sensitized anticancer activity of cisplatin in vivo. Furthermore, lower RIP3 expression was associated with worse chemotherapy response in NSCLC patients. CONCLUSION: Our results indicate that the necroptosis pathway is suppressed in lung cancer through RIP3 promoter methylation, and reactivating this pathway should be exploited for improving lung cancer chemotherapy.

9.
Transl Oncol ; 13(1): 32-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760267

RESUMEN

BACKGROUND: Escaping cell death pathways is an important event during carcinogenesis. We previously identified anti-TNFα-induced apoptosis (ATIA, also known as vasorin) as an antiapoptotic factor that suppresses reactive oxygen species (ROS) production. However, the role of vasorin in lung carcinogenesis has not been investigated. METHODS: Vasorin expression was examined in human lung cancer tissues with immunohistochemistry and database analysis. Genetic and pharmacological approaches were used to manipulate protein expression and autophagy activity in human bronchial epithelial cells (HBECs). ROS generation was measured with fluorescent indicator, apoptosis with release of lactate dehydrogenase, and cell transformation was assessed with colony formation in soft agar. RESULTS: Vasorin expression was increased in human lung cancer tissues and cell lines, which was inversely associated with lung cancer patient survival. Cigarette smoke extract (CSE) and benzo[a]pyrene diol epoxide (BPDE)-induced vasorin expression in HBECs. Vasorin knockdown in HBECs significantly suppressed CSE-induced transformation in association with enhanced ROS accumulation and autophagy. Scavenging ROS attenuated autophagy and cytotoxicity in vasorin knockdown cells, suggesting that vasorin potentiates transformation by impeding ROS-mediated CSE cytotoxicity and improving survival of the premalignant cells. Suppression of autophagy effectively inhibited CSE-induced apoptosis, suggesting that autophagy was pro-apoptotic in CSE-treated cells. Importantly, blocking autophagy strongly potentiated CSE-induced transformation. CONCLUSION: These results suggest that vasorin is a potential lung cancer-promoting factor that facilitates cigarette smoke-induced bronchial epithelial cell transformation by suppressing autophagy-mediated apoptosis, which could be exploited for lung cancer prevention.

10.
ACS Synth Biol ; 8(4): 744-757, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30901519

RESUMEN

The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Optogenética/métodos , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Regulación hacia Abajo/genética , Humanos , Unión Proteica/genética
11.
Natl Sci Rev ; 6(1): 5-7, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34691819
12.
Int J Nanomedicine ; 13: 5937-5952, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323584

RESUMEN

BACKGROUND: The Traditional Chinese Medicine, arsenic trioxide (ATO, As2O3) could inhibit growth and induce apoptosis in a variety of solid tumor cells, but it is severely limited in the treatment of glioma due to its poor BBB penetration and nonspecifcity distribution in vivo. PURPOSE: The objective of this study was encapsulating ATO in the modified PAMAM den-drimers to solve the problem that the poor antitumor effect of ATO to glioma, which provide a novel angle for the study of glioma treatment. METHODS: The targeting drug carrier (RGDyC-mPEG-PAMAM) was synthesized based on Arg-Gly-Asp (RGDyC) and αvß3 integrin targeting ligand, and conjugated to PEGylated fifth generation polyamidoamine dendrimer (mPEG-PAMAM). It was characterized by nuclear magnetic resonance, fourier transform infrared spectra, Nano-particle size-zeta potential analyzer,etc. The in vitro release characteristics were studied by dialysis bag method. MTT assay was used to investigate the cytotoxicity of carriers and the antitumor effect of ATO formulation. In vitro blood-brain barrier (BBB) and C6 cell co-culture models were established to investigate the inhibitory effect of different ATO formulation after transporting across BBB. Pharmacokinetic and antitumor efficacy studies were investigated in an orthotopic murine model of C6 glioma. RESULTS: The prepared RGDyC-mPEG-PAMAM was characterized for spherical dendrites, comparable size (21.60±6.81 nm), and zeta potential (5.36±0.22 mV). In vitro release showed that more ATO was released from RGDyC-mPEG-PAMAM/ATO (79.5%) at pH 5.5 than that of pH 7.4, during 48 hours. The cytotoxicity of PEG-modified carriers was lower than that of the naked PAMAM on both human brain microvascular endothelial cells and C6 cells. In in vitro BBB model, modification of RGDyC heightened the cytotoxicity of ATO loaded on PAMAM, due to an increased uptake by C6 cells. The results of cell cycle and apoptosis analysis revealed that RGDyC-mPEG-PAMAM/ATO arrested the cell cycle in G2-M and exhibited threefold increase in percentage of apoptosis to that in the PEG-PAMAM/ATO group. Compared with ATO-sol group, both RGDyC-mPEG-PAMAM/ATO and mPEG-PAMAM/ATO groups prolonged the half-life time, increased area under the curve, and improved antitumor effect, significantly. While the tumor volume inhibitory of RGDyC-mPEG-PAMAM/ATO was 61.46±12.26%, it was approximately fourfold higher than the ATO-sol group, and twofold to the mPEG-PAMAM/ATO group. CONCLUSION: In this report, RGDyC-mPEG-PAMAM could enhance the antitumor of ATO to glioma, it provides a desirable strategy for targeted therapy of glioma.


Asunto(s)
Arsenicales/uso terapéutico , Dendrímeros/química , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Oligopéptidos/química , Óxidos/uso terapéutico , Polietilenglicoles/química , Animales , Apoptosis/efectos de los fármacos , Trióxido de Arsénico , Arsenicales/administración & dosificación , Arsenicales/farmacocinética , Arsenicales/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Portadores de Fármacos/química , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Glioma/patología , Humanos , Masculino , Ratones , Óxidos/administración & dosificación , Óxidos/farmacocinética , Óxidos/farmacología , Conejos , Ratas , Electricidad Estática , Resultado del Tratamiento
13.
ACS Synth Biol ; 7(10): 2355-2364, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30203962

RESUMEN

Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control-precise spatial and temporal resolution-are currently restricted to a few well-defined natural systems. In addition, the affinities and kinetics of native interactions are often suboptimal and are difficult to engineer in the absence of any structural information. We report a phage display strategy using a small scaffold protein that can be used to discover new binding partners for both light and dark states of a given light-switchable protein. We used our approach to generate binding partners that interact specifically with the light state or the dark state conformation of two light-switchable proteins: PYP, a test case for a protein with no known partners, and AsLOV2, a well-characterized protein. We show that these novel light-switchable protein-protein interactions can function in living cells to control subcellular localization processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas de Visualización de Superficie Celular/métodos , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Espectroscopía de Resonancia Magnética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
14.
Inorg Chem ; 57(17): 10694-10701, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30113819

RESUMEN

A facile reversed-phase microemulsion method was used to synthesize shell-core nanospheres of SiO2@RCs (SiO2-encapsuled rare-earth metal complexes). ß-d-Galactose was then grafted onto the surfaces of the nanospheres through the copper(I)-catalyzed azide-alkyne cycloaddition click reaction for targeted delivery. The chemical characteristics and surface profiles of the nanocarriers were investigated by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. A high-efficiency microwave synthesis method was applied to prepare five complex cores by the reaction of different rare-earth metal salts with two isomeric ligands, o-CPA (2-chlorophenoxyacetic acid) and m-CPA (3-chlorophenoxyacetic acid). The crystal structures of the five synthesized RC cores were confirmed through X-ray diffraction, which revealed the formulas of five RCs, [Dy( o-CPA)3(H2O)]·H2O RC1, [Ho( o-CPA)3(H2O)]·H2O RC2, 2[Er( m-CPA)3(H2O)]·3H2O RC3, 2[Gd( m-CPA)3(H2O)]·3H2O RC4, and [Ce2( m-CPA)6(H2O)3]·2H2O RC5. An in vitro cell study revealed that all RCs exhibited certain anticancer activities. RC2, in particular, showed the strongest cytotoxicity against HepG2 cells. The enhanced cell permeability and drug retention considerably improved the cytotoxicity of all SiO2@RC2-gal relative to that of RC2. The selective uptake of the ß-d-galactose-conjugated nanospheres by HepG2 cells through mechanisms mediated by cell surface receptors resulted in fewer side effects on extrahepatic tissues. Our contribution provides a novel design concept of a target SiO2@RCs-gal nanocarrier for delivering affordable antitumor complexes in cancer therapy.


Asunto(s)
Técnicas de Química Analítica/métodos , Química Clic , Complejos de Coordinación/química , Sistemas de Liberación de Medicamentos , Galactosa/química , Nanosferas/química , Dióxido de Silicio/química , Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Ácido 2,4-Diclorofenoxiacético/química , Antineoplásicos/química , Catálisis , Cristalografía por Rayos X , Células Hep G2 , Humanos , Modelos Biológicos , Estructura Molecular , Difracción de Rayos X
15.
J Drug Target ; 26(1): 86-94, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28635335

RESUMEN

Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.


Asunto(s)
Canfanos/química , Dendrímeros/química , Doxorrubicina/uso terapéutico , Glioma/tratamiento farmacológico , Péptidos/química , Encéfalo/irrigación sanguínea , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Células Endoteliales , Humanos
16.
Dalton Trans ; 46(44): 15424-15433, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29082408

RESUMEN

Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC2@SiO2-FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er2(p-CPA)6(H2O)6] RC1, [Ho2(p-CPA)6(H2O)6] RC2, [Sm(p-CPA)3(H2O)] RC3, [Pr(p-CPA)3(H2O)]·3H2O RC4 and [Ce(p-CPA)3(H2O)2]·2H2O RC5. The carboxyl groups showed two kinds of coordination modes, namely µ2-η1:η1 and µ2-η1:η2, among RC1-RC5. The flexible -OCH2COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 µg mL-1. Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC2@SiO2-FA nanospheres was higher than that of lone RC2. These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.


Asunto(s)
Complejos de Coordinación/química , Portadores de Fármacos/química , Metales de Tierras Raras/química , Nanopartículas/química , Nanosferas/química , Dióxido de Silicio/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Portadores de Fármacos/síntesis química , Portadores de Fármacos/toxicidad , Ácido Fólico/química , Células HEK293 , Células Hep G2 , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Conformación Molecular , Nanosferas/toxicidad , Porosidad , Espectrometría de Fluorescencia
17.
Carcinogenesis ; 38(6): 604-614, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472347

RESUMEN

Mucin 1 (MUC1) is a tumor antigen that is aberrantly overexpressed in various cancers, including lung cancer. Our previous in vitro studies showed that MUC1 facilitates carcinogen-induced EGFR activation and transformation in human lung bronchial epithelial cells (HBECs), which along with other reports suggests an oncogenic property for MUC1 in lung cancer. However, direct evidence for the role of MUC1 in lung carcinogenesis is lacking. In this study, we used the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced A/J mouse lung tumor model to investigate the effect of whole-body Muc1 knockout (KO) on carcinogen-induced lung carcinogenesis. Surprisingly, lung tumor multiplicity was significantly increased in Muc1 KO compared to wild-type (WT) mice. The EGFR/AKT pathway was unexpectedly activated, and expression of the EGFR ligand epiregulin (EREG) was increased in the lung tissues of the Muc1 KO compared to the WT mice. EREG stimulated proliferation and protected against cigarette smoke extract (CSE)-induced cytotoxicity in in vitro cultured human bronchial epithelial cells. Additionally, we determined that MUC1 was expressed in human fibroblast cell lines where it suppressed CSE-induced EREG production. Further, suppression of MUC1 cellular activity with GO-201 enhanced EREG production in lung cancer cells, which in turn protected cancer cells from GO-201-induced cell death. Moreover, an inverse association between MUC1 and EREG was detected in human lung cancer, and EREG expression was inversely associated with patient survival. Together, these results support a promiscuous role of MUC1 in lung cancer development that may be related to cell-type specific functions of MUC1 in the tumor microenvironment, and MUC1 deficiency in fibroblasts and malignant cells results in increased EREG production that activates the EGFR pathway for lung carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/patología , Epirregulina/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Mucina-1/fisiología , Animales , Carcinógenos/toxicidad , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Epirregulina/genética , Receptores ErbB/genética , Retroalimentación Fisiológica , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrosaminas/toxicidad , Fumar/efectos adversos
18.
Protein Cell ; 8(5): 365-378, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28401346

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 +/A272C and FUS +/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 +/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Terapia Genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína FUS de Unión a ARN , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Mutación Missense , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
19.
Eur J Pharm Sci ; 88: 178-90, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26965003

RESUMEN

Effective targeting drug delivery system for glioma treatment is still greatly challenged by the existence of the blood-brain barrier (BBB) and the intracranial overspreading of anti-tumor drug. Herein, we presented a dual-functional glioma targeting delivery of doxorubicin based on the PAMAM G5 dendrimer, modified with folic acid (FA) to target tumor cell, also borneol (BO), a well known safe material derived from traditional Chinese medicine, to facilitate the BBB permeability and reduce the toxicity of naked PAMAM. The intracranial transportation and glioma targeting ability were evaluated on the BBB model and C6 glioma cells in vitro. Also, pharmacokinetics and biodistribution were studied on C6 glioma-bearing rats in vivo. It indeed reduced the cytotoxicity of PAMAM against both HBMEC and C6 cells by coupling BO on the surface, while efficiently boosted BBB permeability with the improvement of transportation ratio by 2 folds to the BO-unmodified conjugates. Furthermore, conjugated FA increased total uptake amount by C6 cells leading to strong inhibition with the 3-fold lower IC50 value than FA-unmodified DOX conjugate. In comparison with DOX solution, FA-BO-PAMAM/DOX exhibited significantly prolonged half-life time and increased area under the curve and improved DOX accumulation in brain tumor. The tumor growth inhibition, in vivo, was significantly increased up to 57.4%. The median survival time of xenograft rats after administering FA-BO-PAMAM/DOX (28days) was significantly prolonged compared to free DOX (18days, P<0.05) or other controls. In conclusion, this strategy of novel targeting nanocarrier provides a promising method to increase the drug accumulation in the tumor site for therapy of glioma.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Canfanos/química , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacocinética , Ácido Fólico/química , Animales , Antineoplásicos/química , Neoplasias Encefálicas/tratamiento farmacológico , Canfanos/farmacología , Línea Celular , Dendrímeros/efectos adversos , Doxorrubicina/administración & dosificación , Células Endoteliales/efectos de los fármacos , Glioma/tratamiento farmacológico , Humanos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Ratas , Ratas Wistar , Distribución Tisular
20.
Protein Cell ; 7(3): 210-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26874523

RESUMEN

Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Células-Madre Neurales/metabolismo , Xerodermia Pigmentosa/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Mutación , Células-Madre Neurales/patología , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...