Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(20): e202300882, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917034

RESUMEN

Developing high performance and environment-friendly fluoropolymers is greatly desired. In this work, we found that 2-diazo-1,1,1-trifluoroethane can be polymerized by air-stable alkyne-palladium(II) catalysts following a living polymerization mechanism, affording a fluoropolymer, poly(trifluoromethyl methylene) in high yield with controlled molar mass and low dispersity. This polymer bears trifluoromethyl on every main chain atom and thus has good resistance to chemical corrosion, high hydrophobicity, and excellent dielectric constant with low dielectric loss. Due to the steric hindrance between the trifluoromethyl pendants, the synthetic poly(trifluoromethyl methylene) can twist into a stable helix. The one-handed preferred helices synthesized using chiral PdII -catalysts exhibit high optical activity and circularly polarized luminescence. Remarkably, such polymer can be completely degraded to (E)-1,1,1,4,4,4-hexafluorobut-2-ene at high temperatures (>280 °C). Additionally, taking advantage of the living chain end, the polymer can be further modified.

3.
Angew Chem Int Ed Engl ; 61(28): e202204966, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35522549

RESUMEN

Cyclic polymers attract attention because of their endless structure and unique properties, which differ from the linear analogs. However, the synthesis of cyclic polymers is difficult and prohibits their functions and applications. In this study, we reported chiral cyclic PdII -catalysts that initiate a living ring-expansion polymerization of isocyanides, yielding a single-handed cyclic-helical poly(phenyl isocyanide), with predictable molecular weight (Mn ) and low dispersity (Mw /Mn ), in good yield. Using this method, cyclic bottlebrush polymers were prepared via the grafting-onto strategy. The cyclic topology was confirmed using various spectroscopic data and atomic force microscope observation. Moreover, the cyclic polymer brushes, comprising of a one-handed helical backbone, showed interesting photoluminescence and circularly-polarized luminescence.

4.
Chem Sci ; 13(4): 1111-1118, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35211277

RESUMEN

Porous materials have recently attracted much attention owing to their fascinating structures and broad applications. Moreover, exploring novel porous polymers affording the efficient capture of iodine is of significant interest. In contrast to the reported porous polymers fabricated with small molecular blocks, we herein report the preparation of porous polymer frameworks using rigid polyisocyanides as building blocks. First, tetrahedral four-arm star polyisocyanides with predictable molecular weight and low dispersity were synthesized; the chain-ends of the rigid polyisocyanide blocks were then crosslinked, yielding well-defined porous organic frameworks with a designed pore size and narrow distribution. Polymers of appropriate pore size were observed to efficiently capture radioactive iodine in both aqueous and vapor phases. More than 98% of iodine could be captured within 1 minute from a saturated aqueous solution (capacity of up to 3.2 g g-1), and an adsorption capacity of up to 574 wt% of iodine in vapor was measured within 4 hours. Moreover, the polymers could be recovered and recycled for iodine capture for at least six times, while maintaining high performance.

5.
Angew Chem Int Ed Engl ; 60(50): 26268-26275, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34562051

RESUMEN

Accurate control of the layer number of orderly stacked 2D polymers has been an unsettled challenge in self-assembly. Herein we describe the fabrication of a bilayer 2D supramolecular organic framework from a monolayer 2D supramolecular organic framework in water by utilizing the cooperative coordination of a rod-like bipyridine ligands to zinc porphyrin subunits of the monolayer network. The monolayer supramolecular framework is prepared from the co-assembly of an octacationic zinc porphyrin monomer and cucurbit[8]uril (CB[8]) in water through CB[8]-encapsulation-promoted dimerization of 4-phenylpyridiunium subunits that the zinc porphyrin monomer bear. The bilayer 2D supramolecular organic framework exhibits structural regularity in both solution and the solid state, which is characterized by synchrotron small-angle X-ray scattering and high-resolution transmission electron microscopic techniques. Atomic force microscopic imaging confirms that the bilayer character of the 2D supramolecular organic framework can be realized selectively on the micrometer scale.

6.
Angew Chem Int Ed Engl ; 60(2): 806-812, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33006185

RESUMEN

Inspired by the exquisite helices in Nature, fabrication of helical materials with controlled handedness has attracted considerable attention. Herein, we report on precis synthesis of single left- and right-handed helical polyisocyanides through living polymerization of achiral monomers using chiral palladium catalysts under helix-sense-selective manner. Mechanism study revealed that the yielded helices with opposite handedness showed different activity of the living chain end. The helix with unfavored handedness was self-terminated, while the one with favored handedness showed high activity and could undergo chain propagation to form a high molecular weight polymer with maintained single-handed helicity.

7.
ACS Appl Bio Mater ; 4(9): 7213-7221, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006953

RESUMEN

Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.


Asunto(s)
Luminiscencia , Nanofibras , Cianuros , Polimerizacion , Polímeros
8.
Angew Chem Int Ed Engl ; 59(38): 16675-16682, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32543000

RESUMEN

Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.

9.
ACS Appl Bio Mater ; 3(9): 5620-5626, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021793

RESUMEN

To mimic the helical structure and function of biopolymers, shell cross-linked nanoparticle (P4) composed of left-handed helical poly(phenylborate isocyanide) in core and hydrophilic polyisocyanide in shell was prepared. The phenylborate in the core and the disulfide bonds in the cross-linkage render the nanoparticle with excellent dual stimuli-responsiveness to glutathione (GSH) and H2O2. Nevertheless, it has good stability in normal physiological conditions. Because of the helicity and borate pendants of the core, such nanoparticle has high capacity for anticancer drug loading, for example, the loading capacity of doxorubicin (DOX) was up to 68%. Moreover, the DOX-loaded DOX@P4 showed excellent tumor cell penetration potency and fast drug release. More than 78% of murine breast cancer cell (4T1) can be killed within 48 h, supporting this material with great potential in antitumor drug nanocarriers.

10.
J Am Chem Soc ; 140(50): 17773-17781, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30488700

RESUMEN

In this work, air-stable palladium(II) catalysts bearing bidentate phosphine ligands were designed and prepared, which could initiate fast and living polymerizations of various diazoacetate monomers under mild conditions. The polymerization afforded the desired polymers in high yields with controlled molecular weights ( Mns) and narrow molecular weight distributions ( Mw/ Mns). The Mns of the isolated polymers were linearly correlated to the initial feed ratios of monomer to catalyst, confirming the living/controlled manner of the polymerizations. The Mn also increased linearly with the monomer conversion, and all of the isolated polymers showed narrow Mw/ Mns. The polymerization was relatively fast and could be accomplished within several minutes. Such fast living polymerization method can be applied to a wide range of diazoacetate monomers in various organic solvents at room temperature in air. Taking advantage of the living nature, we facilely prepared a series of block copolymers through chain extension reactions. The amphiphilic block copolymers synthesized by this method exhibited interesting self-assembly properties. Moreover, polymerization of achiral bulky diazoacetate by Pd(II) catalysts bearing a chiral bidentate phosphine ligand leads to the formation of polymers with high optical activity due to the formation of the predominantly one-handed helix of the main chain. The helix sense of the polymers was determined by the chirality of the Pd(II) catalysts.

11.
ACS Macro Lett ; 7(9): 1073-1079, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-35632938

RESUMEN

In this manuscript, we designed and synthesized three core cross-linked micelles (M-5L, P-5L, and P-5D) with redox-responsive disulfide bonds in the core and carrying optically active helical polyisocyanide arms. Their arms were different in the helicity of the main chain and the chirality of the side groups. These micelles showed excellent redox-responsiveness to reducing agent. However, because of the different chiralities of the arms, the three micelles exhibited different performances in drug delivery and controlled release. The M-5L micelle carrying left-handed helical arms showed better therapeutic effect than the other two due to the rapid cell membrane permeability.

12.
Cell Biochem Funct ; 25(3): 335-43, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17221834

RESUMEN

Brief and sublethal ischaemia renders an organ tolerant to subsequent prolonged ischaemia, which is called ischaemic preconditioning (IPC). In regard to the beneficial effects and endogenous mechanisms of renal delayed IPC, few data are available. In this study, we aim at determining reno-protective effects of delayed IPC against ischaemia-reperfusion (I/R) injury, and illustrating whether these effects are associated with suppressing inflammation and nuclear factor-kappaB (NF-kappaB) activation. I/R injury was induced by clamping both renal pedicles for 40 min, followed by 24 h of reperfusion. The rats were subjected to ischaemia for 20 min (preconditioning) or sham surgery (non- preconditioning) at day 4 before I/R. Functional and morphological parameters were evaluated at 24 h after reperfusion. At the same time, macrophage (ED-1(+)) infiltration, and the expression of intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-alpha (TNF-alpha) were assessed by immunohistochemistry. Moreover, I kappa B-alpha degradation and NF-kappaB/DNA binding activity were analyzed. Compared with rats exposed to I/R injury, preconditioned rats had a significant decrease in levels of serum creatinine (Scr, 384.3 +/- 21.8 micromol/L vs. 52.5 +/- 21.7 micromol/L; p<0.001), blood urea nitrogen (BUN, 40.4 +/- 2.7 mmol/L vs. 15.9 +/- 4.2 mmol/L; p<0.001) and serum aspartate aminotransferase (AST, 486.7 +/- 58.6 IU/L vs. 267.3 +/- 43.9 IU/L; p<0.001). Parallel to the above changes, preconditioned rats preserved structural integrity and decreased tubulointerstitial damage scores (3.4 +/- 0.3 vs. 0.2 +/- 0.05; p<0.001) and ED-1(+) cell infiltration (25.3 +/- 3.5 vs. 6.2 +/- 1.2 cells/HPF, p<0.01). Furthermore, our results showed that the expression of ICAM-1 and TNF-alpha, the degree of I kappa B-alpha degradation, and NF-kappaB/DNA binding activity were reduced by IPC. Taken together, our results demonstrated that delayed IPC offered both functional and histological protection, which may be related to suppression of inflammation in preconditioned kidneys.


Asunto(s)
Inflamación/prevención & control , Precondicionamiento Isquémico/métodos , Riñón/inmunología , FN-kappa B/metabolismo , Daño por Reperfusión/prevención & control , Animales , Aspartato Aminotransferasas/sangre , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Inflamación/inmunología , Molécula 1 de Adhesión Intercelular/biosíntesis , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Factores de Tiempo , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...