Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 278: 114299, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090906

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY: The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS: C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS: The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION: FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP1A2/metabolismo , Medicamentos Herbarios Chinos/toxicidad , Flutamida/toxicidad , Fitoterapia/efectos adversos , Antagonistas de Andrógenos/administración & dosificación , Antagonistas de Andrógenos/toxicidad , Animales , Citocromo P-450 CYP1A2/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Medicamentos Herbarios Chinos/administración & dosificación , Flutamida/administración & dosificación , Flutamida/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ratones , Estructura Molecular
2.
Front Pharmacol ; 11: 747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670053

RESUMEN

Oleanolic acid (OA), a natural triterpenoid, which has the development prospects in anti-tumor therapy is a widely used hepatoprotective drug in China. It has been reported that OA can cause liver toxicity after higher doses or longer-term use. Therefore, the study aims to explore the possible hepatotoxicity mechanism based on liver metabolic profiles. Liver metabolic profiles were obtained from untargeted ultrahigh performance liquid chromatography (UHPLC)-Q Exactive Orbitrap mass spectrometry (MS) technique. It was found that altered bile acid, amino acid, and energy metabolism might be at least partly responsible for OA-induced hepatotoxicity. Bile acid metabolism, as the most important pathway, was verified by using UHPLC-TSQ-MS, indicating that conjugated bile acids were the main contributors to OA-induced liver toxicity. Our findings confirmed that increased bile acids were the key element of OA hepatotoxicity, which may open new insights for OA hepatotoxicity in-depth investigations, as well as provide a reference basis for more hepatotoxic drug mechanism research.

3.
Zhongguo Zhong Yao Za Zhi ; 42(21): 4195-4200, 2017 Nov.
Artículo en Chino | MEDLINE | ID: mdl-29271160

RESUMEN

Zuotai and cinnabar(96%HgS) are contained in many traditional medicines. To examine their potential effects on drug metabolism genes, mice were orally given Zuotai or HgS at doses of 10, 30, 100, 300 mg•kg⁻¹ for 7 days. HgCl2(33.6 mg•kg⁻¹) was gavaged for control. Twenty-four hour later after the last administration, livers were collected, and expressions of genes related to metabolic enzymes and transporters were examined. Zuotai and HgS had no effects on major phase-1, phase-2 and transporter genes; HgCl2 increased the expressions of CYP2B10, CYP4A10, OATP1A4, UGT1A1, UGT2A3, SULT1A1, SULT2A1, MRP1, MRP3 and MRP4; expression of OATP1A1 was decreased by HgCl2, but not by Zuotai and HgS. Therefore, Zuotai and HgS have different adverse effects on drug-metabolizing genes from HgCl2.


Asunto(s)
Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Compuestos de Mercurio/farmacología , Animales , Hígado/enzimología , Cloruro de Mercurio , Ratones
4.
J Pharm Pharmacol ; 69(10): 1409-1417, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28722145

RESUMEN

OBJECTIVES: In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. METHODS: Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. KEY FINDINGS: Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid ß-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. CONCLUSIONS: DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders.


Asunto(s)
Alcaloides/farmacología , Dendrobium , Hígado/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/uso terapéutico , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Expresión Génica , Masculino , Ratones , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico
5.
Int J Neuropsychopharmacol ; 17(6): 871-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24513083

RESUMEN

Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aß1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , GMP Cíclico/metabolismo , Flavonoides/farmacología , Óxido Nítrico/metabolismo , Nootrópicos/farmacología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Óxido Nítrico Sintasa/metabolismo , Fragmentos de Péptidos/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Presenilina-1/genética , Presenilina-1/metabolismo , Distribución Aleatoria
6.
Chronobiol Int ; 30(9): 1135-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23926955

RESUMEN

Sex differences and circadian variation are two major factors that affect the expression of drug-processing genes. This study aimed to examine sex differences in the circadian variation of hepatic cytochrome P450 (Cyp) genes and corresponding nuclear receptors. Adult mice were acclimated to environmentally controlled facilities for 2 wks, and livers were collected every 4 h during a 24-h period. Total RNA and protein were isolated and subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The mRNA expression of the aryl hydrocarbon receptor (AhR) and AhR-regulated Cyp1a1 and Cyp1a2 were higher in females and higher during the light phase. The mRNA expression of constitutive and rostane receptor (CAR) and CYP2B10 protein was female-predominant and higher in the dark phase. Pregnane X receptor (PXR) peaked around 18:00 h, but PXR-regulated Cyp3a11 and Cyp3a25 were higher at 10:00 h, without apparent sex dimorphism at protein levels. Peroxisome proliferator-activated receptor-α (PPARα), Cyp4a10, and Cyp4a14 were higher in females and peaked between 14:00 and 18:00 h. The mRNA levels of farnesoid X receptor (FXR), Cyp7a1, and Cyp27a1 peaked around 18:00 h and CYP7A1 protein was higher during the dark phase and higher in females. Cyp7b1(male-predominant) and Cyp2a4 (female-predominant) both showed circadian variation. Circadian variation of hepatic clock genes such as nuclear receptor Rev-erbα, cryptochrome 1 (Cry1), and brain muscle ARNT-like protein 1 (Bmal1) showed distinct patterns. Sex differences and circadian rhythmicity of Cyp genes and corresponding nuclear receptors exist in mouse liver that could impact xenobiotic metabolism and toxicity at different times of the day.


Asunto(s)
Ritmo Circadiano , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Receptor de Androstano Constitutivo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 2 del Citocromo P450 , Familia 4 del Citocromo P450 , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Ratones , PPAR alfa/metabolismo , Receptor X de Pregnano , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Esteroides/metabolismo , Caracteres Sexuales , Esteroide Hidroxilasas/metabolismo
7.
Molecules ; 18(3): 3060-71, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23470335

RESUMEN

Oleanolic acid (OA) is a triterpenoid and a fantastic molecule with many beneficial effects. However, high-doses and long-term use can produce adverse effects. This study aimed to characterize the hepatotoxic potential of OA. Mice were given OA at doses of 100-3,000 µmol/kg (45-1,350 mg/kg), po for 10 days, and the hepatotoxicity was determined by serum biochemistry, histopathology, and toxicity-related gene expression via real-time RT-PCR. Animal body weight loss was evident at OA doses of 1,000 µmol/kg and above. Serum alanine aminotransferase activities were increased in a dose-dependent manner, indicative of hepatotoxicity. Serum total bilirubin concentrations were increased, indicative of cholestasis. OA administration produced dose-dependent pathological lesions to the liver, including inflammation, hepatocellular apoptosis, necrosis, and feathery degeneration indicative of cholestasis. These lesions were evident at OA doses of 500 µmol/kg and above. Real-time RT-PCR revealed that OA produced dose-dependent increases in acute phase proteins (MT-1, Ho-1, Nrf2 and Nqo1), decreases in bile acid synthesis genes (Cyp7a1 and Cyp8b1), and decreases in liver bile acid transporters (Ntcp, Bsep, Oatp1a1, Oatp1b2, and Ostß). Thus, the clinical use of OA and OA-type triterpenoids should balance the beneficial effects and toxicity potentials.


Asunto(s)
Colestasis/inducido químicamente , Hígado/efectos de los fármacos , Hígado/patología , Ácido Oleanólico/efectos adversos , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Administración Oral , Animales , Ácidos y Sales Biliares/metabolismo , Biomarcadores , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ácido Oleanólico/administración & dosificación , Ácido Oleanólico/farmacocinética , Tamaño de los Órganos/efectos de los fármacos , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...