Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 236: 102614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641040

RESUMEN

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Asunto(s)
Depresión , Lipopolisacáridos , Ratones Noqueados , Neuronas , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Lipopolisacáridos/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones , Depresión/metabolismo , Depresión/inducido químicamente , Receptores de Complemento/metabolismo , Ratones Endogámicos C57BL , Masculino , Ácido Glutámico/metabolismo
2.
Mikrochim Acta ; 190(2): 75, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700977

RESUMEN

Benzotriazole UV stabilizers (BUVSs) are a class of emerging contaminants of concern; the development of rapid and convenient monitoring method for these trace-level pollutants in waters is of crucial significance in environmental science. Here, a novel magnetic flower-like molybdenum disulfide/cobalt ferrite nanocomposite (MoS2/CoFe2O4) was synthesized by hydrothermal reaction. Compared with the conventional Fe3O4-based magnetic composites, the proposed material just required a minimum consumption of Co/Fe towards the equivalent of MoS2 while providing superior magnetization performance. Taking advantages of high adsorption capacity, extraordinary stability, and repeatability in construction, MoS2/CoFe2O4 was applied to the extraction to BUVSs. The enrichment factors of three BUVSs were in the range 164-193 when 20 mL of environmental water sample was loaded on 40 mg of the adsorbent. MoS2/CoFe2O4 could be regenerated and recycled at least 10 cycles of adsorption/desorption with recoveries of 80.1-111%. The method of MoS2/CoFe2O4-based extraction coupled with high-performance liquid chromatography-variable wavelength detector was applied to the monitoring of BUVSs in seawater, lake water, and wastewater, which gave detection limits (S/N = 3) of 0.023-0.030 ng·mL-1 and recoveries of 80.1-110%. The intra-day and inter-day precisions (relative standard deviation, RSDs, n = 3) were in the range 1.6-7.5% and 3.2-11.5%, respectively. The approach is an alternative for efficient and sensitive extraction and determination of trace-level environmental pollutants in waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA