Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38018559

RESUMEN

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Asunto(s)
Ansiolíticos , Dolor Crónico , Electroacupuntura , Ratas , Animales , Ansiolíticos/farmacología , Dolor Crónico/inducido químicamente , Dolor Crónico/terapia , Serotonina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ansiedad/tratamiento farmacológico , Neuronas Serotoninérgicas , Ácido gamma-Aminobutírico/farmacología
2.
CNS Neurosci Ther ; 29(12): 4043-4058, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37401033

RESUMEN

AIMS: Epidemiological studies in patients with neuropathic pain have demonstrated a strong association between neuropathic pain and psychiatric conditions such as anxiety. Preclinical and clinical work has demonstrated that electroacupuncture (EA) effectively alleviates anxiety-like behaviors induced by chronic neuropathic pain. In this study, a potential neural circuitry underlying the therapeutic action of EA was investigated. METHODS: The effects of EA stimulation on mechanical allodynia and anxiety-like behaviors in animal models of spared nerve injury (SNI) were examined. EA plus chemogenetic manipulation of glutamatergic (Glu) neurons projecting from the rostral anterior cingulate cortex (rACCGlu ) to the dorsal raphe nucleus (DRN) was used to explore the changes of mechanical allodynia and anxiety-like behaviors in SNI mice. RESULTS: Electroacupuncture significantly alleviated both mechanical allodynia and anxiety-like behaviors with increased activities of glutamatergic neurons in the rACC and serotoninergic neurons in the DRN. Chemogenetic activation of the rACCGlu -DRN projections attenuated both mechanical allodynia and anxiety-like behaviors in mice at day 14 after SNI. Chemogenetic inhibition of the rACCGlu -DRN pathway did not induce mechanical allodynia and anxiety-like behaviors under physiological conditions, but inhibiting this pathway produced anxiety-like behaviors in mice at day 7 after SNI; this effect was reversed by EA. EA plus activation of the rACCGlu -DRN circuit did not produce a synergistic effect on mechanical allodynia and anxiety-like behaviors. The analgesic and anxiolytic effects of EA could be blocked by inhibiting the rACCGlu -DRN pathway. CONCLUSIONS: The role of rACCGlu -DRN circuit may be different during the progression of chronic neuropathic pain and these changes may be related to the serotoninergic neurons in the DRN. These findings describe a novel rACCGlu -DRN pathway through which EA exerts analgesic and anxiolytic effects in SNI mice exhibiting anxiety-like behaviors.


Asunto(s)
Ansiolíticos , Electroacupuntura , Neuralgia , Ratas , Humanos , Ratones , Animales , Hiperalgesia/terapia , Giro del Cíngulo , Núcleo Dorsal del Rafe/metabolismo , Ratas Sprague-Dawley , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos , Ansiedad/terapia , Modelos Animales de Enfermedad
3.
Physiol Res ; 70(4): 635-647, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34062076

RESUMEN

Chronic pain is regarded to be one of the common and refractory diseases to cure in the clinic. One hundred Hz electroacupuncture (EA) is commonly used for inflammatory pain and 2 Hz for neuropathic pain possibly by modulating the transient receptor potential vanilloid subtype 1 (TRPV1) or the purinergic P2X3 related pathways. To clarify the mechanism of EA under various conditions of pathological pain, rats received a subcutaneous administration of complete Freund's adjuvant (CFA) for inflammatory pain and spared nerve injury (SNI) for neuropathic pain. The EA was performed at the bilateral ST36 and BL60 1 d after CFA or SNI being successfully established for 3 consecutive days. The mechanical hyperalgesia test was measured at baseline, 1 d after model establishment, 1 d and 3 d after EA. The co-expression changes, co-immunoprecipitation of TRPV1 and P2X3, and spontaneous pain behaviors (SPB) test were performed 3 d after EA stimulation. One hundred Hz EA or 2Hz EA stimulation could effectively down-regulate the hyperalgesia of CFA or SNI rats. The increased co-expression ratio between TRPV1 and P2X3 at the dorsal root ganglion (DRG) in two types of pain could be reduced by 100Hz or 2Hz EA intervention. While 100Hz or 2Hz EA was not able to eliminate the direct physical interaction between TRPV1 and P2X3. Moreover, EA could significantly inhibit the SPB induced by the co-activation of peripheral TRPV1 and P2X3. All results indicated that EA could significantly reduce the hyperalgesia and the SPB, which was partly related to inhibiting the co-expression and indirect interaction between peripheral TRPV1 and P2X3.


Asunto(s)
Electroacupuntura , Ganglios Espinales/metabolismo , Hiperalgesia/terapia , Neuralgia/terapia , Receptores Purinérgicos P2X3/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/fisiopatología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatología , Umbral del Dolor , Ratas Sprague-Dawley , Transducción de Señal
4.
Front Neurosci ; 15: 757628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095390

RESUMEN

Neuropathic pain is a common cause of chronic pain and is often accompanied by negative emotions, making it complex and difficult to treat. However, the neural circuit mechanisms underlying these symptoms remain unclear. Herein, we present a novel pathway associated with comorbid chronic pain and anxiety. Using chemogenetic methods, we found that activation of glutamatergic projections from the rostral anterior cingulate cortex (rACC Glu ) to the ventrolateral periaqueductal gray (vlPAG) induced both hyperalgesia and anxiety-like behaviors in sham mice. Inhibition of the rACC Glu -vlPAG pathway reduced anxiety-like behaviors and hyperalgesia in the spared nerve injury (SNI) mice model; moreover, electroacupuncture (EA) effectively alleviated these symptoms. Investigation of the related mechanisms revealed that the chemogenetic activation of the rACC Glu -vlPAG circuit effectively blocked the analgesic effect of EA in the SNI mice model but did not affect the chronic pain-induced negative emotions. This study revealed a novel pathway, the rACC Glu -vlPAG pathway, that mediates neuropathic pain and pain-induced anxiety.

5.
Neural Plast ; 2020: 8865096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123189

RESUMEN

Electroacupuncture (EA) can effectively modulate pain perception and pain-related negative affect; however, we do not know whether the effect of EA on sensation and affect is parallel, or dissociated, interactional. In this study, we observed the effects of the anterior cingulate cortex (ACC) lesion and the primary somatosensory cortex (S1) activation on pain perception, pain-related affection, and neural oscillation in S1. ACC lesions did not affect pain perception but relieved pain-paired aversion. S1 activation increased pain perception and anxious behavior. EA can mitigate pain perception regardless of whether there is an ACC lesion. Chronic pain may increase the delta and theta band oscillatory activity in the S1 brain region and decrease the oscillatory activity in the alpha, beta, and gamma bands. EA intervention may inhibit the oscillatory activity of the alpha and beta bands. These results suggest that EA may mitigate chronic pain by relieving pain perception and reducing pain-related affection through different mechanisms. This evidence builds upon findings from previous studies of chronic pain and EA treatment.


Asunto(s)
Afecto/fisiología , Electroacupuntura , Giro del Cíngulo/fisiología , Percepción del Dolor/fisiología , Corteza Somatosensorial/fisiología , Animales , Masculino , Ratas Sprague-Dawley
6.
Zhongguo Zhen Jiu ; 40(2): 173-8, 2020 Feb 12.
Artículo en Chino | MEDLINE | ID: mdl-32100504

RESUMEN

OBJECTIVE: To observe the expression of GABAA receptor mRNA in different brain regions of the central nervous system in chronic inflammatory pain rats and the intervention effect of electroacupuncture (EA). METHODS: A total of 48 SPF male SD rats were randomly divided into a blank control group, a model control group, an EA group and a sham EA group, 12 rats in each group. The model of chronic inflammatory pain was established by injecting Freund's complete adjuvant into the foot. The EA group was treated with EA 28 days after the model establishment. The "Housanli" (ST 36) and "Kunlun" (BL 60) were selected and treated with dilatational wave, 2 Hz/100 Hz in frequency, 0.5-1.5 mA for 30 min; EA was given only once. In the sham EA group, the same acupoints were selected but the needles were only inserted into subcutaneous area; EA was connected for 30 min without electrical stimulation. The behavior changes of mechanical pain threshold and thermal pain threshold before model establishment, 1 day, 3 days, 7 days, 14 days, 21 days and 28 days after the model establishment as well as emotional behavior 29 days after the model establishment were observed; the relative expressions of GABAA receptor mRNA in anterior cingulate cortex, amygdala and hypothalamus were observed. RESULTS: Compared with the blank control group, the change rates of mechanical pain threshold and thermal pain threshold in the model control group were decreased significantly 1 day, 3 days, 7 days, 14 days, 21 days, 28 days after model establishment (P<0.01); 29 days after model establishment, the movement distance and staying time in the central area of open field test in the model control group were decreased significantly (P<0.05). After EA intervention, compared with the model control group and the sham EA group, the change rates of mechanical pain threshold and thermal pain threshold, as well as the movement distance and the staying time of central area were significantly increased in the EA group (P<0.01, P<0.05). Twenty-nine days after model establishment, the expression of GABAA receptor mRNA in anterior cingulate cortex and hypothalamus was not significantly different among all groups (P>0.05). Compared with the blank control group, the expression of GABAA receptor mRNA in the amygdala was decreased significantly in the model control group (P<0.01); compared with the model control group and the sham EA group, the expression of GABAA receptor mRNA in amygdala was increased after intervention in the EA group (P<0.01). CONCLUSION: Single treatment of EA could significantly increase the mechanical pain threshold and thermal pain threshold, improve abnormal emotional behavior in rats with chronic inflammatory pain, which may be related to the increasing of expression of GABAA receptor mRNA in the amygdala.


Asunto(s)
Encéfalo/metabolismo , Electroacupuntura , Inflamación/terapia , Dolor , Receptores de GABA-A/metabolismo , Puntos de Acupuntura , Amígdala del Cerebelo , Animales , Masculino , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
7.
Front Neurosci ; 14: 615395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505241

RESUMEN

Anxiety is a common comorbidity associated with chronic pain, which results in chronic pain complexification and difficulty in treatment. Electroacupuncture (EA) is commonly used to treat chronic pain and anxiety. However, the underlying mechanisms of the EA effect are largely unknown. Here, we showed that a circuitry underlying chronic pain induces anxiety disorders, and EA can treat them by regulating such circuitry. Using chemogenetic methods, we found that chemogenetic activation of the rostral anterior cingulate cortex (rACC) glutamatergic output to the thalamus induced anxiety disorders in control rats. Then, chemogenetic inhibition of the rACC-thalamus circuitry reduced anxiety-like behavior produced by intraplantar injection of the complete Freund's adjuvant (CFA). In this study, we examined the effects of EA on a rat model of CFA-mediated anxiety-like behaviors and the related mechanisms. We found that chemogenetic activation of the rACC-thalamus circuitry effectively blocked the effects of EA on chronic pain-induced anxiety-like behaviors in CFA rats. These results demonstrate an underlying rACC-thalamus glutamatergic circuitry that regulates CFA-mediated anxiety-like behaviors. This study also provides a potential mechanistic explanation for EA treatment of anxiety caused by chronic pain.

8.
Anticancer Drugs ; 31(2): 141-149, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743135

RESUMEN

Human colorectal cancer (CRC), a highly malignant and metastatic carcinoma, is resistant to many present anticancer therapies. The inhibition of tumor survival and growth through receptor suppression is a promising way to treat CRC. The study aimed to investigate the effect of a natural plant triterpenoid, berberine (BBR), on SW480 cells and whether its role is mediated by Glucose-regulated protein 78 (GRP78). MTT assay, wound healing assay, and Annexin V-FITC assay were used to measure the effect of BBR on the proliferation, migration, and apoptosis of SW480 cells, respectively. Immunofluorescence and western blotting were used to evaluate both the downregulation of BBR on GRP78 and the role of GRP78 in the effect of BBR on SW480 cells. Our results revealed that BBR inhibited the proliferation and migration, as well as induced the apoptosis of SW480 cells, in a dose-dependent manner. BBR induced the dose-dependent inhibition of cell proliferation in HT-29 cells. BBR inhibited the expression of GRP78 and its localization on the cell surface. Moreover, BBR inhibited the expression of Bax, Bcl-2, c-Myc, and Vimentin and up-regulated the cytokeratin expression in SW480 cells. In addition, we found that the effects of BBR on cell proliferation, migration, and apoptosis in SW480 cells were reversed by the overexpression of GRP78. Our findings demonstrated that BBR inhibited the proliferation and migration and induced the apoptosis of SW480 cells by downregulating the expression of GRP78, and targeting GRP78 might be a potential way to develop the effective anticancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Berberina/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células Tumorales Cultivadas
9.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269659

RESUMEN

Chronic inflammatory pain is one of the most common complaints that seriously affects patients' quality of life. Previous studies have demonstrated that the analgesic effect of electroacupuncture (EA) stimulation on inflammatory pain is related to its frequency. In this study, we focused on whether the analgesic effects of EA are related to the period of stimulation. Purinergic receptor P2X3 (P2X3) is involved in the pathological process underlying chronic inflammatory pain and neuropathic pain. We hypothesized that 100 Hz EA stimulation alleviated Freund's complete adjuvant (CFA) induced inflammatory pain via regulating P2X3 expression in the dorsal root ganglion (DRG) and/or spinal cord dorsal horn (SCDH). We also assumed that the analgesic effect of EA might be related to the period of stimulation. We found that both short-term (three day) and long-term (14 day) 100 Hz EA stimulation effectively increased the paw withdrawal threshold (PWT) and reversed the elevation of P2X3 in the DRG and SCDH of CFA rats. However, the analgesic effects of 100 Hz EA were not dependent on the period of stimulation. Moreover, P2X3 inhibition or activation may contribute to or attenuate the analgesic effects of 100 Hz EA on CFA-induced inflammatory pain. This result indicated that EA reduced pain hypersensitivity through P2X3 modulation.


Asunto(s)
Electroacupuntura/métodos , Adyuvante de Freund , Manejo del Dolor/métodos , Dolor/inducido químicamente , Receptores Purinérgicos P2X3/análisis , Animales , Ganglios Espinales/patología , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/terapia , Masculino , Dolor/patología , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/patología
10.
Am J Ther ; 25(3): e314-e319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27574922

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Previous study suggested that toll-like receptor (TLR) signaling pathway contributes to the development and progression of RA. In recent years, acupuncture has become one of the most vital treatments of arthralgia. But little is known about the mechanisms of improving RA by acupuncture. STUDY QUESTION: The study studied the effect of electroacupuncture in "Zusanli" and "Kunlun" acupoints on the expression of TLR4, myeloid differentiation factor 88 (MYD88), and NF-κB in adjuvant arthritis rats to clarify the molecular mechanism of acupuncture of RA. STUDY DESIGN: A rat model of adjuvant arthritis was established with injection of 0.1 mL Freund complete adjuvant in the right hindlimb footpad. We next punctured the Zusanli and Kunlun acupoints with 0.25 × 40-mm acupuncture needles to 5-mm depth. Then, we performed electroacupuncture treatment for 28 days with frequency of 2 Hz and intensity of 2 mA, once a day and 30 minutes each time. MEASURES AND OUTCOMES: Arthritis index and paw swelling were measured every week. FQ-PCR and western blot were used to detect the expression of TLR4, MYD88, and NF-κB. RESULTS: Paw swelling of rats injected with Freund complete adjuvant was more serious than that of the normal rats, which illustrated the successful establishment of adjuvant arthritis rat model. After treatment for 14 days, the paw swelling and joint symptoms score decreased, paw tissue inflammation eased in the rats of treatment group compared with the model group during the same period. After treatment for 28 days, the expression of TLR4, MYD88, and NF-κB in the ankle bone tissues decreased at both mRNA and protein levels. CONCLUSIONS: Stimulation with electric needle in Zusanli and Kunlun acupoints can reduce the expression of TLR4, MYD88, and NF-κB, which play an important role in treatment of adjuvant arthritis.


Asunto(s)
Puntos de Acupuntura , Artritis Experimental/terapia , Artritis Reumatoide/terapia , Electroacupuntura/métodos , Receptor Toll-Like 4/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Modelos Animales de Enfermedad , Adyuvante de Freund/inmunología , Humanos , Masculino , FN-kappa B , Ratas , Ratas Sprague-Dawley , Transducción de Señal/inmunología , Resultado del Tratamiento
11.
Eur J Pharmacol ; 815: 427-436, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28970012

RESUMEN

BACKGROUND: Tanshinone IIA Sodium sulfonate (STS) is clinically used for treating cardiovascular diseases in Traditional Chinese Medicine due to its antioxidation and anti-inflammation activities. Intracellular chloride channel 1 (CLIC1) participates in the regulation of oxidative stress and inflammation. This study investigates whether CLIC1 mediates the cardioprotective effects of STS. METHODS: STS were used to treat atherosclerosis (AS) induced by feeding Apolipoprotein E-deficient (ApoE-/-) mice with a high-fat, cholesterol-rich diet. In addition, normal and CLIC1-/- human umbilical vein endothelial cells were treated with STS after exposure to H2O2 for 12h. The oxidative status was determined by analyzing reactive oxygen species(ROS) and malondialdehyde (MDA) levels. ELISA, qRT-PCR and Western blot were used to determine the levels of TNF-α, IL-6, ICAM-1 and VCAM-1. CLIC1 cellular localization was examined by immunofluorescence. Chloride ion concentration was detected with chloride ion quenchers (MQAE). RESULTS: STS treatment decreased atherosclerotic lesion area by 3.5 times (P = 0.001) in vivo. Meanwhile, STS reduced MDA production (13.6%, P = 0.008), increased SOD activity (113.6%, P = 0.008), decreased TNF-α (38.6%, P = 0.008) and IL-6 (43.0%, P = 0.03) levels, and downregulated the expression of CLIC1, ICAM-1, and VCAM-1 in the atherosclerotic mice. The dose-dependent anti-oxidative and anti-inflammatory effects of STS were further confirmed in vitro. Furthermore, CLIC1 depletion abolished the STS-mediated decrease of ROS and MDA production in HUVEC cells. Additionally, STS inhibited both CLIC1 membrane translocation and chloride ion concentration. CONCLUSION: The anti-oxidant, and anti-inflammation properties of STS in preventing AS is mediated by its inhibition of CLIC1 expression and membrane translocation.


Asunto(s)
Antioxidantes/metabolismo , Aterosclerosis/patología , Canales de Cloruro/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Fenantrenos/farmacología , Animales , Aterosclerosis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/tratamiento farmacológico , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/uso terapéutico , Transporte de Proteínas/efectos de los fármacos
12.
Environ Pollut ; 231(Pt 1): 1172-1180, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935403

RESUMEN

Epidemiological studies have exhibited a positive association between fine particulate matter (PM2.5) exposure and adverse pregnancy outcome (APO). However, source-related effect and the potential mechanism have not been thoroughly elucidated in toxicology. In this study, PM2.5 was collected during a severe winter haze episode in an energy-base city of China. We coupled this approach with the source appointment by applying the Lagrangian Integrated Trajectory and Concentration Weighted Trajectory model. We observed that the primary trajectory with high polluted air mass came from the northwest of the sampling site. Approximately 90% or more of PM2.5 was derived from the industry at this haze period. Next, the sampled PM2.5 was used to study the classical hormone synthesis pathway on trophoblast JEG-3 cells. PM2.5 induced the secretion of human chorionic gonadotrophin (HCG) and the proliferation of JEG-3 cells at a noncytotoxic concentration. However, the synthesis of progesterone was significantly suppressed, even if both hCG and cyclic adenosine monophosphate (cAMP) were increased, suggesting that PM2.5 may interfere the downstream of cAMP. As expected, the phosphorylated activity of protein kinase A (PKA) was attenuated. Subsequently, the downstream molecules of steroidogenesis, such as ferredoxin reductase (FDXR), CYP11A1 (encoded P450scc), and 3ß-Hydroxysteroid dehydrogenase type 1 (3ß-HSD1), were inhibited. Therefore, PM2.5, primarily derived from industry, may directly inhibit the phosphorylation status of PKA in JEG-3 which, in turn, inhibited the proteins expression in progesterone-synthesis to suppress progesterone levels. Considering the pivotal role of progesterone in pregnancy maintenance, the mechanism on hormone synthesis may provide a better understanding for PM2.5-caused APO. Industry-emanated PM2.5, though not specific, could threaten the placenta, which needs to be verified by further epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Industrias , Material Particulado/toxicidad , Progesterona/biosíntesis , Trofoblastos/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , China , Ciudades , Femenino , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Progesterona/genética , Estaciones del Año , Trofoblastos/metabolismo
13.
Curr Protein Pept Sci ; 18(1): 15-21, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27097723

RESUMEN

BACKGROUND: Regardless of the achievable of chiral switch, most of the chiral nature agrochemical is still sold as racemate or enantiomer-enriched pesticides. Herbicides, accounted for a large proportion in pesticide market, are of great concern due to the frequent occurrence in environment and the structure selective phyto-biochemical impact on plants. METHODS: We give a systematic search on the literature database and included approximately 50 papers which were related to the review. We do careful categories for the chiral herbicides according to their structure and listed out the acute phytotoxicity endpoints. The potential mechanism for the enantioselective toxicity was concluded into 5 main points. RESULTS: The enantiomer-specific toxicity on plant growth and flowers are limited on phenoxyalkanoic acid herbicide, aryloxyphenoxypropanoic acid, imidazolinone herbicide, and acetamide pesticide. Data available on the potential mechanism explanation of enantioselective phytotoxicity has been concerned on the genetic transcription, oxidative stress, and photosynthesis disruption, etc. A comparison between the two enantiomers' enantioselective effects identified an organ-specific and species-specific phenomenon for several herbicides. Moreover, a more herbicidal activity enantiomer is also displayed the more toxicity than its antipode. CONCLUSION: The review elucidated a paucity of information on the enantioselective effect research on various types of plants at the different life stages. It appealed us to conduct a more holistic approach to balance the benefit between herbicidal activity and phytotoxicity when try to develop an enantio-pure herbicide.


Asunto(s)
Tecnología Química Verde , Herbicidas/metabolismo , Herbicidas/toxicidad , Fotosíntesis , Animales , Biodegradación Ambiental , Biotransformación , Catálisis , Sustancias Peligrosas/química , Sustancias Peligrosas/metabolismo , Sustancias Peligrosas/toxicidad , Herbicidas/química , Humanos , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas
14.
PLoS One ; 11(11): e0166790, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861612

RESUMEN

Endothelial dysfunction, which includes endothelial oxidative damage and vascular inflammation, is a key initiating step in the pathogenesis of atherosclerosis (AS) and an independent risk factor for this disorder. Intracellular chloride channel 1 (CLIC1), a novel metamorphic protein, acts as a sensor of cell oxidation and is involved in inflammation. In this study, we hypothesize that CLIC1 plays an important role in AS. Apolipoprotein E-deficient mice were supplied with a normal diet or a high-fat and high-cholesterol diet for 8 weeks. Overexpressed CLIC1 was associated with the accelerated atherosclerotic plaque development, amplified oxidative stress, and in vivo release of inflammatory cytokines. We subsequently examined the underlying molecular mechanisms through in vitro experiments. Treatment of cultured human umbilical vein endothelial cells (HUVECs) with H2O2 induced endothelial oxidative damage and enhanced CLIC1 expression. Suppressing CLIC1 expression through gene knocked-out (CLIC1-/-) or using the specific inhibitor indanyloxyacetic acid-94 (IAA94) reduced ROS production, increased SOD enzyme activity, and significantly decreased MDA level. CLIC1-/- HUVECs exhibited significantly reduced expression of TNF-α and IL-1ß as well as ICAM-1 and VCAM-1 at the protein levels. In addition, H2O2 promoted CLIC1 translocation to the cell membrane and insertion into lipid membranes, whereas IAA94 inhibited CLIC1 membrane translocation induced by H2O2. By contrast, the majority of CLIC1 did not aggregate on the cell membrane in normal HUVECs, and this finding is consistent with the changes in cytoplasmic chloride ion concentration. This study demonstrates for the first time that CLIC1 is overexpressed during AS development both in vitro and in vivo and can regulate the accumulation of inflammatory cytokines and production of oxidative stress. Our results also highlight that deregulation of endothelial functions may be associated with the membrane translocation of CLIC1 and active chloride-selective ion channels in endothelial cells.


Asunto(s)
Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Endotelio Vascular/metabolismo , Estrés Oxidativo/genética , Vasculitis/genética , Vasculitis/metabolismo , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores , Adhesión Celular , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Placa Aterosclerótica , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Vasculitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA