Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(23): 10015-10027, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38798012

RESUMEN

Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.


Asunto(s)
Plata , Pez Cebra , Animales , Plata/toxicidad , Estrés Oxidativo/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nanopartículas del Metal/toxicidad , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos
2.
Pest Manag Sci ; 79(9): 3122-3132, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37013793

RESUMEN

BACKGROUND: Indoxacarb, representing an efficient insecticide, is normally made into a bait to spread the poison among red fire ants so that it can be widely applied in the prevention and control of Solenopsis invicta. However, the potential toxicity mechanism of S. invicta in response to indoxacarb remains to be explored. In this study, we integrated mass spectrometry imaging (MSI) and untargeted metabolomics methods to reveal disturbed metabolic expression levels and spatial distribution within the whole-body tissue of S. invicta treated with indoxacarb. RESULTS: Metabolomics results showed a significantly altered level of metabolites after indoxacarb treatment, such as carbohydrates, amino acids and pyrimidine and derivatives. Additionally, the spatial distribution and regulation of several crucial metabolites resulting from the metabolic pathway and lipids can be visualized using label-free MSI methods. Specifically, xylitol, aspartate, and uracil were distributed throughout the whole body of S. invicta, while sucrose-6'-phosphate and glycerol were mainly distributed in the abdomen of S. invicta, and thymine was distributed in the head and chest of S. invicta. Taken together, the integrated MSI and metabolomics results indicated that the toxicity mechanism of indoxacarb in S. invicta is closely associated with the disturbance in several key metabolic pathways, such as pyrimidine metabolism, aspartate metabolism, pentose and glucuronate interconversions, and inhibited energy synthesis. CONCLUSION: Collectively, these findings provide a new perspective for the understanding of toxicity assessment between targeted organisms S. invicta and pesticides. © 2023 Society of Chemical Industry.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Ácido Aspártico , Espectrometría de Masas , Pirimidinas
3.
J Hazard Mater ; 453: 131304, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043861

RESUMEN

Indoxacarb is a widely used insecticide in the prevention and control of agricultural pests, whereas its negative effects on non-target organisms remain largely unclear. Herein, we demonstrated the integrated metabolomics and mass spectrometry imaging (MSI) methods to investigate the chronic exposure toxicity of indoxacarb at environmentally relevant concentrations in adult zebrafish (Danio rerio) liver. Results showed that movement behaviors of zebrafish can be affected and catalase (CAT), glutamic oxalacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities were significantly increased after indoxacarb exposure for 28 days. Pathological analysis of zebrafish livers also showed that cavitation and pathological reactions occur. Metabolomics results indicated that metabolic pathways of zebrafish liver could be significantly affected by indoxacarb, such as tricarboxylic acid (TCA) cycle and various amino acid metabolisms. MSI results revealed the spatial differentiation of crucial metabolites involved in these metabolic pathways within zebrafish liver. Taken together, these integrated MSI and metabolomics results revealed that the toxicity of indoxacarb arises from metabolic pathways disturbance, which resulted in the decrease of liver detoxification ability. These findings will promote the current understanding of pesticide risks and metabolic disorders in zebrafish liver, which provide new insights into the environmental risk assessment of insecticides on aquatic organisms.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Insecticidas/toxicidad , Insecticidas/metabolismo , Espectrometría de Masas , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
5.
Oral Dis ; 29(5): 2163-2176, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35506257

RESUMEN

OBJECTIVES: Mammalian palatogenesis is a highly regulated morphogenetic process to form the intact roof of the oral cavity. Long noncoding RNAs (lncRNAs) and mRNAs participate in numerous biological and pathological processes, but their roles in palatal development and causing orofacial clefts (OFC) remain to be clarified. METHODS: Palatal tissues were separated from ICR mouse embryos at four stages (E10.5, E13.5, E15, and E17). Then, RNA sequencing (RNA-seq) was used. Various analyses were performed to explore the results. Finally, hub genes were validated via qPCR and in situ hybridization. RESULTS: Starting from E10.5, the expression of cell adhesion genes escalated in the following stages. Cilium assembly and ossification genes were both upregulated at E15 compared with E13.5. Besides, the expression of cilium assembly genes was also increased at E17 compared with E15. Expression patterns of three lncRNAs (H19, Malat1, and Miat) and four mRNAs (Cdh1, Irf6, Grhl3, Efnb1) detected in RNA-seq were validated. CONCLUSIONS: This study provides a time-series expression landscape of mRNAs and lncRNAs during palatogenesis, which highlights the importance of processes such as cell adhesion and ossification. Our results will facilitate a deeper understanding of the complexity of gene expression and regulation during palatogenesis.


Asunto(s)
Labio Leporino , Fisura del Paladar , ARN Largo no Codificante , Ratones , Animales , Perfilación de la Expresión Génica/métodos , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones Endogámicos ICR , Fisura del Paladar/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
6.
Anal Bioanal Chem ; 414(16): 4777-4790, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35508646

RESUMEN

Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.


Asunto(s)
Manejo de Especímenes , Pez Cebra , Animales , Abejas , Técnicas Histológicas , Insectos , Mamíferos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Eur J Med Chem ; 237: 114417, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35504210

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are the first and most successful drugs designed to exploit the concept of synthetic lethality (SL) between PARP-1 and BRCA1/2, which provides a novel strategy for tumor treatment. However, narrowed indications and resistance to PARP-1 inhibitors have hampered their further clinical application. Inducing "BRCAness" by targeting other targets, which will directly or indirectly disturb the homologous recombination (HR) repair pathway of double-strand DNA breaks (DSBs), is a promising strategy for expanding the clinical application of PARP-1 inhibitors and overcoming resistance to these inhibitors. Tankyrase1/2 (TNKS1/2) are involved in the nonhomologous end-joining (NHEJ) DNA repair pathway by regulating Wnt/ß-catenin signaling. TNKS1/2 can also induce a "BRCAness" phenotype by regulating Wnt signaling, which increases the sensitivity of tumor cells with BRCA proficiency to PARP-1 inhibitors. These results suggest that cotargeting PARP1/2 and TNKS1/2 not only exerts a synergistic effect in the treatment of tumors but also provides a novel strategy for expanding the clinical application of PARP-1 inhibitors and overcoming resistance to PARP-1 inhibitors. Therefore, a series of dual PARP-1/2 and TNKS1/2 inhibitors were rationally designed, synthesized, and evaluated for their pharmacological properties. Among these candidates, compound I-9 showed excellent inhibitory activity as it inhibited PARP-1/2 and TNKS1/2 with IC50 values of 0.25 nM, 1.2 nM, 13.5 nM and 4.15 nM, respectively. I-9 exhibited favorable synergistic antitumor efficacy in both BRCA-mutant and BRCA-wild-type cancer lines. Moreover, I-9 exerted prominent dose-dependent antitumor activity in an HCT116 cell-derived xenograft model and was significantly more efficacious than olaparib and E7449. Overall, the present study indicated that I-9, a dual PARP-1/2 and TNKS1/2 inhibitor, is a novel and promising agent for cancer therapy.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Línea Celular Tumoral , Reparación del ADN , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo
8.
Nucleic Acids Res ; 50(5): 2440-2451, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35234905

RESUMEN

CUGBP Elav-like family member 1 (CELF1), an RNA-binding protein (RBP), plays important roles in the pathogenesis of diseases such as myotonic dystrophy, liver fibrosis and cancers. However, targeting CELF1 is still a challenge, as RBPs are considered largely undruggable. Here, we discovered that compound 27 disrupted CELF1-RNA binding via structure-based virtual screening and biochemical assays. Compound 27 binds directly to CELF1 and competes with RNA for binding to CELF1. Compound 27 promotes IFN-γ secretion and suppresses TGF-ß1-induced hepatic stellate cell (HSC) activation by inhibiting CELF1-mediated IFN-γ mRNA decay. In vivo, compound 27 attenuates CCl4-induced murine liver fibrosis. Furthermore, the structure-activity relationship analysis was performed and compound 841, a derivative of compound 27, was identified as a selective CELF1 inhibitor. In conclusion, targeting CELF1 RNA-binding activity with small molecules was achieved, which provides a novel strategy for treating liver fibrosis and other CELF1-mediated diseases.


Asunto(s)
Proteínas de Unión al ARN , ARN , Animales , Proteínas CELF1/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Ratones , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Sci Total Environ ; 809: 151116, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34688756

RESUMEN

Development of stereoisomeric neonicotinoid pesticides with lower toxicity is key to preventing global population declines of honeybees, whereas little is known about the in situ metabolic regulation of honeybees in response to stereoisomeric pesticides. Herein, we demonstrate an integrated mass spectrometry imaging (MSI) and untargeted metabolomics method to disclose disturbed metabolic expression levels and spatial differentiation in honeybees (Apis cerana) associated with stereoisomeric dinotefuran. This method affords a metabolic network mapping capability regarding a wide range of metabolites involved in multiple metabolic pathways in honeybees. Metabolomics results indicate more metabolic pathways of honeybees can be significantly affected by S-(+)-dinotefuran than R-(-)-dinotefuran, such as tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate metabolism, and various amino acid metabolisms. MSI results demonstrate the cross-regulation and spatial differentiation of crucial metabolites involved in the TCA cycle, purine, glycolysis, and amino acid metabolisms within honeybees. Taken together, the integrated MSI and metabolomics results indicated the higher toxicity of S-(+)-dinotefuran arises from metabolic pathway disturbance and its inhibitory role in the energy metabolism, resulting in significantly reduced degradation rates of detoxification mechanisms. From the view of spatial metabolomics, our findings provide novel perspectives for the development and applications of pure chiral agrochemicals.


Asunto(s)
Guanidinas , Nitrocompuestos , Animales , Abejas , Metabolómica , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad
10.
Toxicol Appl Pharmacol ; 420: 115530, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33845055

RESUMEN

Chronic Kidney Disease (CKD) is a serious threat to human health. In addition, kidney fibrosis is a key pathogenic intermediate for the progression of CDK. Moreover, excessive activation of fibroblasts is key to the development of kidney fibrosis and this process is difficult to control. Notably, fraxinellone is a natural compound isolated from Dictamnus dasycarpus and has a variety of pharmacological activities, including hepatoprotective, anti-inflammatory and anti-cancer effects. However, the effect of fraxinellone on kidney fibrosis is largely unknown. The present study showed that fraxinellone could alleviate folic acid-induced kidney fibrosis in mice in a dose dependent manner. Additionally, the results revealed that fraxinellone could effectively down-regulate the expression of CUGBP1, which was highly up-regulated in human and murine fibrotic renal tissues. Furthermore, expression of CUGBP1 was selectively induced by the Transforming Growth Factor-beta (TGF-ß) through p38 and JNK signaling in kidney fibroblasts. On the other hand, downregulating the expression of CUGBP1 significantly inhibited the activation of kidney fibroblasts. In conclusion, these findings demonstrated that fraxinellone might be a new drug candidate and CUGBP1 could be a promising target for the treatment of kidney fibrosis.


Asunto(s)
Benzofuranos/farmacología , Proteínas CELF1/metabolismo , Fibroblastos/efectos de los fármacos , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Animales , Proteínas CELF1/genética , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ácido Fólico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Endogámicos C57BL , Ratas , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Int Immunopharmacol ; 95: 107567, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756225

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. However, the mechanism of tissue tropism of SARS-CoV-2 remains unclear. Here, recombinant receptor-binding subdomain 1 of spike protein of SARS-CoV-2 (RBD-SD1) was used as a probe to investigate the potential tropism of SARS-CoV-2 in thirty-three types of normal human tissues. RBD-SD1 probe was observed to interact with cells in reported SARS-CoV-2 infected organs. Interestingly, the RBD-SD1 probe strongly interacted with bone marrow cells in an angiotensin-converting enzyme 2 (ACE2)-independent manner. In addition, SARS-CoV-2 induced the ACE2 mRNA expression in human primary bone marrow cells, suggesting human bone marrow cells may be sensitive to SARS-CoV-2 infection. Therefore, human bone marrow cells could be strongly infected by SARS-CoV-2, which may play an important role in the pathogenesis of COVID-19. These findings provide a deeper understanding of SARS-CoV-2 infection routes, thus contributing to the treatment of COVID-19.


Asunto(s)
SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Cultivo Primario de Células , Unión Proteica , Dominios Proteicos , Regulación hacia Arriba
13.
Org Lett ; 18(18): 4478-81, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27584913

RESUMEN

An efficient and facile process was developed for the remote C-H bond amidation of 8-aminoquinoline scaffolds on the C5 position which is geometric. The method only made use of PhI(OAc)2 as a mediator and showed good tolerance toward numerous dibenzenesulfonimides and amides, giving the corresponding products in moderate to excellent yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...