Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 455: 139903, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38824733

RESUMEN

The effects of oat ß-glucan (OG) combined with ultrasound-assisted treatment on thermal aggregation behavior of silver carp myofibrillar protein (MP) under low salt concentration were investigated. The particle size and turbidity of MP were increased to higher levels by OG participation or ultrasound treatment during the two-stage heating. Both OG and ultrasonic treatment promoted the unfolding of MP structure, evidenced by the gradual decrease of α-helix content and fluorescence intensity, as well as the increase of ß-sheet content, surface hydrophobicity and sulfhydryl content. Compared to solely OG or ultrasonic treatment, the combination of OG and ultrasound further promoted the unfolding of MP and more sulfhydryl groups were exposed in the pre-heating stage, which was conducive to strengthen the chemical forces between MP molecules. Additionally, AFM analysis revealed that the apparent morphology of the OG combined with ultrasonic treated group exhibited a smoother surface and a more uniform distribution of aggregates.

2.
Heliyon ; 10(5): e27618, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495177

RESUMEN

Acyl-CoA thioesterase 4 (ACOT4) has been reported to be related to acetyl-CoA carboxylase activity regulation; However, its exact functions in liver lipid and glucose metabolism are still unclear. Here, we discovered explored the regulatory roles of ACOT4 in hepatic lipid and glucose metabolism in vitro. We found that the expression level of ACOT4 was significantly increased in the hepatic of db/db and ob/ob mice as well as obese mice fed a high fat diet. Adenovirus-mediated overexpression of ACOT4 promoted gluconeogenesis and high-glucose/high-insulin-induced lipid accumulation and impaired insulin sensitivity in primary mouse hepatocytes, whereas ACOT4 knockdown notably suppressed gluconeogenesis and decreased the triglycerides accumulation in hepatocytes. Furthermore, ACOT4 knockdown increased insulin-induced phosphorylation of AKT and GSK-3ß in primary mouse hepatocytes. Mechanistically, we found that upregulation of ACOT4 expression inhibited AMP-activated protein kinase (AMPK) activity, and its knockdown had the opposite effect. However, activator A769662 and inhibitor compound C of AMPK suppressed the impact of the change in ACOT4 expression on AMPK activity. Our data indicated that ACOT4 is related to hepatic glucose and lipid metabolism, primarily via the regulation of AMPK activity. In conclusion, ACOT4 is a potential target for the therapy of non-alcoholic fatty liver (NAFLD) and type 2 diabetes.

3.
Food Chem X ; 21: 101059, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38292677

RESUMEN

The effects of different edible fungi on the flavor profiles of fish soups were analyzed by sensory evaluation, non-volatile and volatile flavor compounds. The sensory attributes of fish soups were modified by adding edible fungi, with the highest total scores obtained for AAFS and DFS. Compared with pure fish soup, the amounts of free amino acids, nucleotides, organic acids and inorganic ions were increased with fungi addition, especially AAFS. The different mushroom fish soups could be clearly distinguished by E-nose analysis, and a total of 52 flavor compounds, mainly composed of aldehydes (27), ketones (11), alcohols (8), esters (4), and others (2), were then identified by GC-IMS. Eventually, fish soup samples were classified into three groups based on OPLS-DA analysis: Ⅰ (LEFS), Ⅱ (BFS and BEFS) and Ⅲ (ABFS, AAFS and DFS). The results showed that Agrocybe aegerita had high suitability for improving the flavor of Large yellow croaker soups.

4.
Front Psychiatry ; 14: 1090420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124267

RESUMEN

In humans and animals, exposure to changes in internal or external environments causes acute stress, which changes sleep and enhances neurochemical, neuroendocrine, and sympathetic activities. Repeated stress responses play an essential role in the pathogenesis of psychiatric diseases and sleep disorders. However, the underlying mechanism of sleep changes and anxiety disorders in response to acute stress is not well established. In the current study, the effects of restraint stress (RS) on anxiety and sleep-wake cycles in mice were investigated. We found that after RS, the mice showed anxiety-like behavior after RS manipulation and increased the amounts of both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep in the dark period. The increase in sleep time was mainly due to the increased number of episodes of NREM and REM sleep during the dark period. In addition, the mice showed an elevation of the EEG power spectrum of both NREM and REM sleep 2 h after RS manipulation. There was a significant reduction in the EEG power spectrum of both NREM and REM sleep during the darkperiod in the RS condition. The expression of the c-Fos protein was significantly increased in the parabrachial nucleus, bed nucleus of the stria terminalis, central amygdala, and paraventricular hypothalamus by RS manipulation. Altogether, the findings from the present study indicated that neural circuits from the parabrachial nucleus might regulate anxiety and sleep responses to acute stress, and suggest a potential therapeutic target for RS induced anxiety and sleep alterations.

5.
J Food Sci ; 88(7): 3007-3021, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248780

RESUMEN

The synergistic effects of the combination of ultrahigh pressure (UHP) with allicin on the gel properties, flavor characteristics, and myosin structure of scallops were investigated. The results indicated that chewiness reached maximum, uniform, and dense microstructures at B-300 MPa, and scallops with favorable gel properties. In addition, the electronic nose and tongue could clearly distinguish the olfactory and gustatory properties of scallops, and the interaction of UHP and allicin increased the variety of volatile compounds in scallops, which mainly included 1-hydroxy-2-propanone, 1-hexenal, 2-butanone-D, and 1-octen-3-ol. The main performance was fruit aroma and a plantlike aroma and mushroomlike odor. UHP and allicin changed the microenvironment of tryptophan residues, and allicin formed larger aggregates by forming disulfides with myosin. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis results could show that myosin had low degradation in B-300 MPa. Thus, comprehensively viewed, UHP and allicin play a role in gel formation of myosin from obturator muscle at 300 MPa, whereas allicin and myosin form disulfides as the main factor of myosin gelation. PRACTICAL APPLICATION: To enhance the diversity of scallop preparation methods and improve the quality of the obtained product, UHP and allicin treatment result in scallops with satisfactory chewiness and flavor, which provides application prospects for scallop processing.


Asunto(s)
Pectinidae , Animales , Pectinidae/química , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Disulfuros
6.
Ultrason Sonochem ; 95: 106406, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37088028

RESUMEN

The effect of oat ß-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Productos Pesqueros/análisis , Geles/química , Agua
7.
Food Chem ; 417: 135821, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934711

RESUMEN

The effects of different amount (0-12%) of chickpea protein-stabilized Pickering emulsion (CPE) on the gelling properties, intermolecular interactions, microstructure, and physicochemical stability of hairtail fish myosin gels were investigated. The myosin gel with 6%-9% CPE demonstrated significantly higher viscoelasticity, gel strength, hardness, water-holding capacity and whiteness, compared to the control (P < 0.05). In addition, Raman spectroscopy showed that CPE changed the microenvironment of the myosin, which promoted the changes in protein secondary structures, disulfide bond conformation and the local environments of the composite gels. The addition of 6%-9% CPE also enhanced the disulfide bond and hydrophobic interaction of myosin gels which induced more compact gel network structures. Furthermore, CPE improved the lipid oxidative stability and freeze-thaw stability of myosin gel. The results indicated that CPE could improve the gelling properties of myosin, making it a potential new additive and lipid substitute for the development of new emulsion gel products.


Asunto(s)
Cicer , Animales , Emulsiones/química , Geles/química , Miosinas , Disulfuros , Lípidos
8.
J Sci Food Agric ; 103(7): 3367-3375, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840432

RESUMEN

BACKGROUND: Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat ß-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS: An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to ß-sheet and ß-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION: The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Conformación Proteica , Agua , Productos Pesqueros/análisis
9.
Food Funct ; 14(3): 1510-1519, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651848

RESUMEN

Umami peptides have currently become the research focus in the food umami science field and the key direction for umami agent development. This is because umami peptides have good processing characteristics, umami and nutritional values. We here used virtual screening (including online enzymolysis through ExPASy PeptideCutter, bioactivity screening using the PeptideRanker, toxicity and physicochemical property prediction using Innovagen and ToxinPred software), molecular docking, and electronic tongue analysis to identify umami peptides generated from Atlantic cod myosin. Twenty-three putative umami peptides were screened from the myosin. Molecular docking results suggested that these 23 peptides could enter the binding pocket in the T1R3 cavity, wherein Glu128 and Asp196 were the main amino acid residues, and that hydrogen bonding and electrostatic interactions were the main binding forces. Twelve synthetic peptides tested on the electronic tongue exhibited umami taste and a synergistic effect with monosodium glutamate (MSG). Among them, GGR, AGCD, and SGDAW had higher umami intensities than the other peptides, while SGDAW and NDDGW exhibited stronger umami-enhancing capabilities in 0.1% MSG solution. This study offers a method for the rapid screening of umami peptides from marine protein resources and places the foundation for their application in the food industry.


Asunto(s)
Gadus morhua , Animales , Simulación del Acoplamiento Molecular , Gadus morhua/metabolismo , Glutamato de Sodio/química , Péptidos/química , Gusto , Receptores Acoplados a Proteínas G/metabolismo
10.
Food Funct ; 14(1): 160-170, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477011

RESUMEN

We identified novel antioxidant peptides from Pacific saury (Cololabis saira). Enzymatic hydrolysates were isolated, purified, and identified by ultrafiltration, gel chromatography, reverse phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). Twenty putative peptides were identified from five components of HPLC, among which sixteen peptides were predicted to have good water solubility and non-toxicity by online tools. Fifteen peptides were successfully docked with myeloperoxidase, and we observed that Arg31, Arg323, and Lys505 played a key role in the antioxidant mechanism, with van der Waals forces and conventional hydrogen bonds as important interaction forces. Six identified peptides with lower CDOCKER energy values were synthesized to verify the antioxidant activity, and the results showed that the synthetic peptide QQAAGDKIMK displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate (31.05 ± 0.27%) and reducing power (0.29 ± 0.01). The synthetic peptide KDEPDQASSK at a concentration of 300 µg mL-1 exhibited the strongest protective effects on H2O2-induced oxidative damage of HEK-293 cells, with cell viability and ROS level of 0.38 ± 0.03 and 0.08 ± 0.01, respectively.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Humanos , Antioxidantes/química , Peróxido de Hidrógeno/toxicidad , Simulación del Acoplamiento Molecular , Células HEK293 , Péptidos/química , Estrés Oxidativo
11.
Food Chem ; 404(Pt A): 134530, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223669

RESUMEN

Repeated freezing and thawing due to temperature fluctuations irreversibly damage the muscle tissue cells of fish, thereby reducing their economic quality. In this study, the effects of ultrasound-assisted immersed freezing (UIF) technology on the changes in the quality of large yellow croaker (Pseudosciaena crocea) subjected to 0 to 5 freeze-thaw cycles were investigated. The results showed that the quality deterioration inevitably occurred after repeated freeze-thaw cycles. However, UIF significantly delayed the changes in the water holding capacity (WHC), immobilized water content, color and texture properties of fish. Compared to the control group (air freezing, AF), the thawing loss in the UIF group was reduced by 1.09 % to 4.54 % (P < 0.05), the centrifuging loss was reduced by 0.39 % to 1.86 % (P < 0.05), the migration of immobilized water content was reduced by 4 % to 5 % (P < 0.05). Moreover, SEM and LM images illustrated that the microstructures of muscle tissue in UIF group were more uniform and denser than that of the AF group after freeze-thaw cycles, and that the ice crystal size from UIF group were smaller and more regular than that of AF group. Furthermore, UIF did not caused more excessive protein oxidation of myofibrillary protein, but significantly delayed the lipid oxidation of fish muscle. The results indicated that UIF technology effectively inhibits the deterioration of fish quality affected by multiple freeze-thaw cycles, thus providing a reference for controlling the deterioration of aquatic products due to temperature fluctuations in the industry.


Asunto(s)
Perciformes , Animales , Congelación , Agua/química , Músculos , Proteínas
12.
Food Chem ; 402: 134325, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174352

RESUMEN

Electronic nose (E-nose), electronic tongue (E-tongue) and colorimeter combined with data fusion strategy and different machine learning algorithms (artificial neural network, ANN; extreme gradient boosting, XGBoost; random forest regression, RFR; support vector regression, SVR) were applied to quantitatively assess and predict the freshness of horse mackerel (Trachurus japonicus) during the 90-day frozen storage. The results showed that the fusion data of the E-nose, E-tongue and colorimeter could contain more information (with a total variance contribution rate of 94.734 %) than that of the independent one. ANN, RFR and XGBoost showed good performance in predicting biochemical indexes with the RP2 (the square correlation coefficient of the Test set) ≥ 0.929, 0.936, 0.888, respectively, while SVR models showed a bad performance (RP2 ≤ 0.835). In addition, among the established quantitative models, the RFR model had the best prediction effect on K value (freshness index) with Rp2 of 0.936, ANN model had the highest fitting degree in predicting carbonyl content (protein oxidation degree) with Rp2 of 0.978, XGBoost model had the best performance in predicting the TBA value (lipid oxidation degree) with Rp2 of 0.994, RFR model was the best strategy for predicting Ca2+-ATPase activity (protein denaturation degree) with Rp2 of 0.969. The results demonstrated that the freshness of frozen fish can be effectively evaluated and predicted by the combination of electronic sensor fusion signals.


Asunto(s)
Nariz Electrónica , Perciformes , Animales , Peces , Lengua , Lípidos , Adenosina Trifosfatasas
13.
Biomed Pharmacother ; 153: 113495, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076509

RESUMEN

Cognitive dysfunction is common in hypothyroid patients, even after undergoing sufficient levothyroxine (LT4) replacement therapy for euthyroid. Our previous studies indicated that cholinergic neurons might contribute to the decline of cognition in adult-onset hypothyroidism. Nevertheless, the role of the cellular and neural control of basal forebrain (BF) cholinergic neurons in hypothyroidism-induced cognitive impairments is unknown. Using transgenic mice that specifically expressed chemogenetic activators in their BF cholinergic neurons, we systematically investigated the role of BF cholinergic neurons in hypothyroidism-induced cognitive dysfunction by the combined approaches of patch clamp electrophysiology, behavioral testing, and immunohistochemistry. The results showed that LT4 treatment in the adult-onset hypothyroid mice reversed only 78 % of the BF cholinergic neurons to their normal values of electrophysiological properties. LT4 monotherapy did not rehabilitate cognitive function in the hypothyroid mice. Chemogenetic selective activation of the BF cholinergic neurons combined with LT4 treatment significantly improved learning and memory functions in the hypothyroid mice. In addition, chemogenetic activation of the cholinergic neurons induced the robust expression of c-Fos protein in the BF, prefrontal cortex (PFC), and hippocampus. This indicated that the BF cholinergic neurons improved learning and memory functions in the hypothyroid mice via the BF-PFC and BF-hippocampus pathways. In the hypothyroid C57BL/6 J mice, combined treatment via LT4 and donepezil, a cholinesterase inhibitor, significantly increased cognitive functions. The results suggested that the BF cholinergic neurons are critical for regulating learning and memory and reveal a novel pathophysiological mechanism for hypothyroidism-induced cognitive impairments.


Asunto(s)
Prosencéfalo Basal , Hipotiroidismo , Animales , Prosencéfalo Basal/fisiología , Colinérgicos , Neuronas Colinérgicas , Cognición , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
14.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102134

RESUMEN

Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.

15.
Food Res Int ; 159: 111612, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940806

RESUMEN

To make better use of cod head (Gadus macrocephalus), a by-product of fish processing, the effects of ultrasound pretreatment on the enzymatic properties and volatile compounds of cod head enzymatic hydrolysates were investigated. The results demonstrated that ultrasound pretreatment at 150-600 W had a positive effect cod head enzymatic hydrolysates. The soluble peptides content of the enzymatic hydrolysates reached the highest value of 5.31 ± 0.16 mg/mL at the ultrasound power level of 450 W, and the content of peptide molecules < 3-kDa was up to 93.96%. The type and relative content of volatile compounds, especially aldehydes, alcohols, and ketones, also increased with the increase the ultrasound power. The electronic tongue results indicated that ultrasound pretreatment reduced bitterness and astringency. The electronic nose results indicated that the hydrogen- and alkane-containing odor components in the hydrolyzed liquid after ultrasound pretreatment differed significantly from conventional enzymatic hydrolysates. In conclusion, ultrasound pretreatment may be applicable as a suitable technology to assist enzymatic hydrolysis of the cod head, and as such, promote the utilization of fish by-products.


Asunto(s)
Gadiformes , Animales , Nariz Electrónica , Productos Pesqueros , Hidrólisis , Péptidos/química
16.
J Food Sci ; 87(9): 3900-3912, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35894520

RESUMEN

In the present study, egg white protein (EWP) and myofibrillar protein (MP) were mixed in different ratios (0/100, 10/90, 20/80, 30/70, 40/60, 50/50, 100/0 for EWP/MP) and subjected to unheated, preheated (40°C/30 min), two-step heated (40°C/30 min, 90°C/20 min), and one-step heated (90°C/20 min) treatments to study the thermal aggregation of the two proteins. Their aggregation behavior was characterized by turbidity, active sulfhydryl, degree of protein cross-linking, protein characteristic spectra, and microscopic morphology. The results indicated that for the mixed protein system composed of EWP and MP, the mixed protein aggregation volume was larger and regular at an EWP/MP of 30/70, when the degree of cross-linking was best. When the ratio of EWP/MP was 50/50, the aggregate-protein interaction was dominant, and the excess EWP acted as a barrier to cross-linking and wrapped around the surface of the aggregates to form larger aggregates. Comparing the two-step heated and one-step heated conditions, the former is superior. PRACTICAL APPLICATION: The combination of egg white protein and myofibrillar protein can provide a theoretical reference for the protein content in surimi products, and moderate addition has an enhancing effect on surimi protein cross-linking and promotes gel formation. Excessive addition will form aggregates outside the egg white protein wrapping phenomenon, and the quality of surimi gel products will be affected.


Asunto(s)
Perciformes , Agregado de Proteínas , Animales , Proteínas del Huevo , Calor
17.
Food Chem ; 397: 133766, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908465

RESUMEN

The potential effects of yeast ß-glucan (YG) on heat-induced gel properties, microstructure and flavor adsorption capacity of fish myosin at different NaCl concentrations were investigated in this study. The incorporation of YG significantly improved the texture properties, gel strength, water holding capacity (WHC), storage modulus and loss modulus of myosin gels, especially at a high salt level, whereas the whiteness declined. Furthermore, myosin gels containing YG displayed a more compact and ordered three-dimensional network structure, accompanied by the increasing immobilization of water in gels. The binding abilities of gels to selected flavor compounds at high salt content were inferior to those at the low salt content. Regardless of the salt level, YG addition boosted the flavor binding capacity of gels, which might be attributed to the unfolding of the protein conformation by exposing more flavor-binding sites, as well as the porous sponge structure of YG with unique adsorption capacity.


Asunto(s)
beta-Glucanos , Adsorción , Animales , Peces , Geles/química , Miosinas , Saccharomyces cerevisiae , Agua/química
18.
J Texture Stud ; 53(4): 563-576, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35580190

RESUMEN

The use of egg white powder (EWP) to enhance the physicochemical properties, molecular structure, and thermal stability of Decapterus maruadsi mince gels was investigated. The thermal stability was analyzed by adding spray-dried EWP (0, 0.2, 0.4, 0.6, 0.8, and 1%) to the mince, and mince gels were prepared to study the changes in their fracture constant, water distribution, microstructure, and protein conformation of mince gels. In addition, the stress-strain curve of the EWP-mince gel was measured to obtain its compressive modulus (E). The formation of the mince gel was promoted by EWP, and the whiteness, fracture constant, water-holding capacity (WHC), and immobilized water were all enhanced. At 0.8% addition of EWP, the fracture constant increased from 176.715 ± 2.463 N/m to 348.631 ± 3.144 N/m (p < .05), which was a nearly twofold improvement. Additionally, the WHC increased from 75.21% to 79.99%, and the percentage of immobilized water increased from 94.03% to 94.91%. The EWP-mince gel network structure was the most uniform and dense, and there were increases in hydrogen bonds, disulfide bonds, ß-sheets, and ß-turns in mince gels, as well as the storage modulus (G') and enthalpy (ΔH). In contrast to the control group, the relative content of α-helixes decreased from 53.34% to 37.09% and transformed into other secondary structures, and the bulk water and cooking loss also decreased to 2.41% and 8.51%, respectively. Consequently, EWP effectively improved the quality of mince products, and the effect was most apparent when 0.8% was added.


Asunto(s)
Clara de Huevo , Perciformes , Animales , Clara de Huevo/química , Geles/química , Polvos , Agua
19.
BMC Neurosci ; 23(1): 25, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468730

RESUMEN

BACKGROUND: Hashimoto's thyroiditis (HT) is an autoimmune illness that renders individuals vulnerable to neuropsychopathology even in the euthyroid state, the mechanisms involved remain unclear. We hypothesized that activated microglia might disrupt synapses, resulting in cognitive disturbance in the context of euthyroid HT, and designed the present study to test this hypothesis. METHODS: Experimental HT model was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Morris Water Maze was measured to determine mice spatial learning and memory. The synaptic parameters such as the synaptic density, synaptic ultrastructure and synaptic-markers (SYN and PSD95) as well as the interactions of microglia with synapses were also determined. RESULTS: HT mice had poorer performance in Morris Water Maze than controls. Concurrently, HT resulted in a significant reduction in synapse density and ultrastructure damage, along with decreased synaptic puncta visualized by immunostaining with synaptophysin and PSD-95. In parallel, frontal activated microglia in euthyroid HT mice showed increased engulfment of PSD95 and EM revealed that the synaptic structures were visible within the microglia. These functional alterations in microglia corresponded to structural increases in their attachment to neuronal perikarya and a reduction in presynaptic terminals covering the neurons. CONCLUSION: Our results provide initial evidence that HT can induce synaptic loss in the euthyroid state with deficits might be attributable to activated microglia, which may underlie the deleterious effects of HT on spatial learning and memory.


Asunto(s)
Enfermedad de Hashimoto , Microglía , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos NOD , Microglía/patología , Sinapsis
20.
Ultrason Sonochem ; 83: 105942, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35131561

RESUMEN

The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.


Asunto(s)
Carpas , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Calefacción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...