Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-32, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712259

RESUMEN

Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.

2.
Int J Biol Macromol ; 251: 126428, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37598816

RESUMEN

Radio frequency (RF) heating as an emerging technology is widely used to improve cereal-based food quality. To further investigate effects of RF treatment on buckwheat quality, structures and physicochemical properties of protein and starch in buckwheat were evaluated under various temperatures (80, 90, and 100 °C) and holding times (0, 5, and 10 min). Results showed that protein-starch complexes were reaggregated with the increases of RF heating temperature and time, as well as the values of R1047/1022, crystallinity, random coil, and α-helix significantly decreased, and the values of ß-sheet obviously increased. Moreover, viscosities and rheological properties of buckwheat were reduced by the raised RF treatment intensity. Besides, the RF processing had a mostly positive effect on swelling power at low temperature of 30 °C, but contrary effect at high temperatures of 60 °C and 90 °C. However, changes of water solubility index, emulsifying capacity, and emulsion stability depended on the RF processing intensity. These results of the study suggested that buckwheat quality was affected by multiple RF treatment conditions, which can be tailored to develop a RF process having the potential to improve the function of buckwheat flour.

3.
Foods ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36832830

RESUMEN

Sprouts may be contaminated with different pathogenic and spoilage microorganisms, which lead far too easily to foodborne outbreaks. The elucidations of microbial profiles in germinated brown rice (BR) are important, but the changes in the microbial composition during germination are unknown. This study aimed to investigate the microbiota composition and to monitor the dominant microbial dynamics in BR during germination using both culture-independent and -dependent methods. BR samples (HLJ2 and HN) were collected from each stage of the germination processing. The populations of microbes (total viable counts, yeast/mold counts, Bacillus cereus, and Enterobacteriaceae) of two BR cultivars increased markedly with the prolongation of the germination time. High-throughput sequencing (HTS) showed that the germination process significantly influenced the microbial composition and reduced the microbial diversity. Similar microbial communities were observed between the HLJ2 and the HN samples, but with different microbial richness. The bacterial and fungal alpha diversity achieved the maximum for ungerminated samples and declined significantly after soaking and germination. During germination, Pantoea, Bacillus, and Cronobacter were the dominant bacterial genera, but Aspergillus, Rhizopus, and Coniothyrium dominated for the fungi in the BR samples. The predominance of harmful and spoilage microorganisms in BR during germination is mainly from contaminated seeds, which highlights the potential risk of foodborne illness from sprouted BR products. The results provide new insight into the microbiome dynamics of BR and may help to establish effective decontamination measures against pathogenic microorganisms during sprout production.

4.
Int J Food Microbiol ; 385: 109997, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36334351

RESUMEN

Buckwheat kernels were susceptible to be contaminated by heat-resistant spores. This study aimed to investigate effects of radio frequency (RF) heating, ultraviolet (UV) light and their combination treatment on the inactivation of B. cereus spores and quality attributes of buckwheat kernels. Results showed that Weibull model well fitted the inactivation curves of B. cereus spores under RF heating or UV light, and both of the two techniques had a tailing phenomenon (n < 1) in the decontamination process. But the inactivation levels of spores significantly increased by the combined treatments of RF and UV, regardless of the treatment sequence. Treatment by individual RF heating at 105 °C for 30 min or UV exposure at 5.00 mW/cm2 for 60 min resulted in >2.0 log CFU/g reduction of B. cereus spores. The similar inactivation effect could be achieved with shorter processing times by combined treatments (RF temperature-holding time + UV intensity-irradiation time: 85-10 + 3.50-10, 90-0 + 2.25-10, and 95-5 + 1.00-10). Besides, the colors, antioxidant compounds and antioxidant activities of buckwheat were not significantly deteriorated after these combined treatments, but the enzymatic activities were reduced, which was beneficial for long-term storage. Therefore, the proposed sequential treatment of RF heating and UV light in this study holds great potential to assure the food safety of grains.


Asunto(s)
Bacillus cereus , Fagopyrum , Rayos Ultravioleta , Esporas Bacterianas/fisiología , Recuento de Colonia Microbiana , Microbiología de Alimentos , Antioxidantes/farmacología , Calor
5.
Int J Food Microbiol ; 381: 109911, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36063682

RESUMEN

Pork preservation and cooking are common processes in food production. This study analyzed the influence of cinnamon essential oil nanoemulsions (CEON), ε-polylysine (ε-PL) and CEON/ε-PL on microbial community and quality of pork during refrigerated storage and radio frequency (RF) cooking. Results showed that a stable CEON was prepared with soybean lecithin (oil: lecithin = 1:1 w/w). CEON and ε-PL inhibited the growth of total bacteria counts (TBC) of raw pork, and caused Salmonella reduction at refrigerated storage of 12 d. Photobacterium and Pseudomonas were dominant spoilage bacteria of raw pork during refrigerated period. The 0.25 % CEON and 0.125 % CEON + 0.25 % ε-PL had good antimicrobial effects against Photobacterium while 0.5 % ε-PL had a small effect. Pork treated by CEON and CEON/ε-PL had better freshness than control and ε-PL treated samples. RF cooking lowered cooking time compared to water bath cooking at 80 °C and a similar quality of cooked pork was observed. CEON/ε-PL promoted Salmonella and TBC inactivation during RF cooking. TVB-N content, pH, cooking loss and appearance of RF cooked pork were not influenced by the addition of CEON/ε-PL, but the odor was slightly affected. The hardness, springiness and chewiness were enhanced by the addition of CEON/ε-PL. The results revealed that CEON/ε-PL could be used in raw pork preservation and promote bacteria inactivation during RF cooking.


Asunto(s)
Antiinfecciosos , Microbiota , Aceites Volátiles , Carne de Cerdo , Carne Roja , Animales , Antiinfecciosos/farmacología , Bacterias , Cinnamomum zeylanicum , Culinaria/métodos , Microbiología de Alimentos , Conservación de Alimentos/métodos , Lecitinas/farmacología , Aceites Volátiles/farmacología , Polilisina/farmacología , Carne Roja/microbiología , Salmonella , Porcinos , Agua/farmacología
6.
J Colloid Interface Sci ; 616: 641-648, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240442

RESUMEN

Two-dimensional black phosphorus-based nanomaterials with distinct properties have emerged as fascinating semiconductor photocatalysts. In this work, metal phosphide (M-P: Co2P, Ni-P and Cu-P) in-situ growth on black phosphorus (BP) nanosheets is developed for photocatalytic carbon dioxide conversion. The M-P/BP heterojunction, especially Co2P/BP materials, show largely improved carbon dioxide capturing ability and charge separation efficiency. More importantly, the catalytic active Co in Co2P/BP can activate the adsorbed CO2 molecules and further boost the electron-hole separation process, which improves the photocatalytic activity for carbon dioxide reduction. The obtained Co2P/BP presented a photocatalytic CO production rate of 255.1 µmol/g∙h, which was almost two times higher than that of bulk BP (141.8 µmol/g∙h). This work shows that M-P/BP materials have high potential in photocatalytic CO2 reduction due to their high stability and performance.

7.
Int J Food Microbiol ; 367: 109586, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35193099

RESUMEN

Alfalfa sprouts have high nutritional values when consumed raw, but are easily contaminated by food pathogens. This study aimed to evaluate effects of essential oil (EO) vapors, RF heating and their combinations on microbial inactivation, germination rate and generated sprouts' quality of alfalfa seeds at moisture contents of 7.52%, 9.53% and 11.45% wet basis (w.b.). Results showed that cinnamon oil and oregano oil vapors both had antimicrobial effects against Salmonella on alfalfa seeds and cinnamon oil vapor had a little better activity. Weibull model well fitted the Salmonella inactivation curves under RF heating. The rate of Salmonella inactivation increased but germination rate decreased with increasing temperature and moisture content of seeds. The intermittent RF treatments improved the heating uniformity and germination rate of the whole batch of seeds as compared to the continuous RF heating. The combination of intermittent RF heating and cinnamon oil vapor exhibited additive antimicrobial effects, up to 3.99-4.12 log CFU/g Salmonella reductions, and maintained the germination rate above 90%. However, for natural microbial decontamination, combined treatments only caused 0.56-0.82 log CFU/g reductions of total bacterial counts. The fresh weight, length, flavor, the content of phenolics and ascorbic acid, and antioxidant capacity of generated sprouts were not significantly impacted. The study provided an effective method for microbial control on sprouting seeds.


Asunto(s)
Medicago sativa , Aceites Volátiles , Cinnamomum zeylanicum , Recuento de Colonia Microbiana , Microbiología de Alimentos , Germinación , Calefacción , Medicago sativa/microbiología , Aceites Volátiles/farmacología , Semillas/microbiología
8.
Int J Food Microbiol ; 363: 109500, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34952411

RESUMEN

Microbial contamination is a persistent problem for grain industry. Many studies have shown that radio frequency (RF) heating can effectively reduce pathogens populations in low moisture foods, but there is a lack on the efficacy to decontaminate natural microbiome. The main objectives of this study were to investigate the effects of different RF heating conditions on natural microbial populations and physicochemical properties of buckwheat. In this study, 30 buckwheat samples collected from 10 different Provinces in China were analyzed for their microbial loads, and the samples with the highest microbial populations were used for further study to select the suitable RF heating conditions. The results showed that microbial loads in tested buckwheat kernels were in the range of 3.4-6.2 log CFU/g. Samples from Shanxi (SX-3) had significantly higher microbial counts than other samples. The selected four temperature-time combinations: 75 °C-20 min, 80 °C-10 min, 85 °C-5 min, and 90 °C-0 min of RF heating could reduce microbial counts to <3.0 log CFU/g in buckwheat kernels at 16.5% w.b. moisture content. Furthermore, the reduction populations of the inoculated pathogens (Salmonella Typhimurium, Escherichia coli, Cronobacter sakazakii, and Bacillus cereus) reached 4.0 log CFU/g under the above conditions, and almost 5.0 log CFU/g especially at high temperature-short holding time combinations (85 °C-5 min and 90 °C-0 min). Besides, physicochemical properties evaluation also showed the insignificant color changes and nutrients loss after RF treatment at 90 °C-0 min. Therefore, the RF heating at 90 °C-0 min holds greater potential than the other lower temperature-longer holding time combinations for applications in buckwheat pasteurization.


Asunto(s)
Fagopyrum , Calefacción , Recuento de Colonia Microbiana , Microbiología de Alimentos , Pasteurización , Ondas de Radio
9.
Foods ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204952

RESUMEN

Tahini and tahini-based products are popular with consumers due to their special flavor and high nutritional values, but often have been linked to Salmonella outbreaks. The objective of this study was to compare effects of different kinds of natural antimicrobials on Salmonella inactivation in undiluted and diluted tahini during thermal treatment and storage. Results showed that the Weibull model was more suitable to describe the thermal inactivation behavior of S. montevideo CICC21588 in two kinds of tahini than the first-order model. Inactivation curves were concave-upward in undiluted tahini but concave-downward in diluted tahini. During storage of undiluted tahini, 3% oregano oil caused extra 1.44 or 0.80 log CFU/g reductions after 7 days at 25 °C or 4 °C compared to the control and 0.5% citric acid caused an extra reduction of 0.75 log CFU/g after 7 d at 4 °C. For diluted tahini, 2-3% oregano oil and 0.4-0.5% ε-polylysine reduced more populations compared to undiluted tahini. These antimicrobials all inhibited the growth of S. montevideo during 24 h at 25 °C and ε-polylysine had the best effect. Furthermore, these antimicrobials enhanced the Salmonella inactivation in diluted tahini during thermal treatment, and there was less of a synergistic effect of thermal and antimicrobials in undiluted tahini due to less sublethal injured cells caused by heat. This study may provide useful information for Salmonella inactivation in tahini.

10.
Int J Biol Macromol ; 128: 480-492, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30682478

RESUMEN

A novel crude exopolysaccharide (EPS) produced by Lactobacillus plantarum KX041 possessed prominent antioxidant activity which was proved in our previous study. In our present study, the further purifications were conducted to obtain EPS fractions, which were called as EPS-1-1, EPS-2-1 and EPS-3. The structures and conformational characterizations were determined through FT-IR, UV, GC, HPLC, NMR, SEM and Congo red test analysis. The Mw of EPS-1-1, EPS-2-1 and EPS-3 were estimated to be 57,201, 70,734, and 26,387 Da, respectively. EPS-1-1 and EPS-2-1 had the similar structure, composed of arabinose, mannose, glucose and galactose with a ratio of 1.09:88.53:3.99:6.39 and 0.58:94.11:3.55:1.76, and both were α-type configurations. Whereas EPS-3 contained rhamnose, fucose, arabinose, xylose, mannose, glucose, galactose and galacturonic acid in a molar ratio of 2.01:2.65:10.95:4.62:4.07:27.81:44.16:3.73 and possessed a triple helical structure. SEM results indicated EPS-1-1 and EPS-2-1 appeared flake shapes piling up into compact structures with a rough surface. In addition, these purified EPS fractions all possessed the immune activity, DPPH/ABTS radicals scavenging activities and DNA damage protective effect.


Asunto(s)
Lactobacillus plantarum/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Benzotiazoles/química , Compuestos de Bifenilo/química , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Células HT29 , Humanos , Ratones , Fagocitosis/efectos de los fármacos , Picratos/química , Polisacáridos Bacterianos/aislamiento & purificación , Células RAW 264.7 , Ácidos Sulfónicos/química
11.
J Ind Microbiol Biotechnol ; 45(10): 913-927, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30051274

RESUMEN

Lignin valorization can be obtained through cleavage of selected bonds by microbial enzymes, in which lignin is segregated from cellulose and hemicellulose and abundant phenolic compounds can be provided. In this study, Pseudomonas sp. Q18, previously isolated from rotten wood in China, was used to degrade alkali lignin and raw lignocellulosic material. Gel-permeation chromatography, field-emission scanning electron microscope, and GC-MS were combined to investigate the degradation process. The GC-MS results revealed that the quantities of aromatic compounds with phenol ring from lignin increased significantly after incubation with Pseudomonas sp. Q18, which indicated the degradation of lignin. According to the lignin-derived metabolite analysis, it was proposed that a DyP-type peroxidase (PmDyP) might exist in strain Q18. Thereafter, the gene of PmDyP was cloned and expressed, after which the recombinant PmDyP was purified and the enzymatic kinetics of PmDyP were assayed. According to results, PmDyP showed promising characteristics for lignocellulosic biodegradation in biorefinery.


Asunto(s)
Bacterias/enzimología , Biodegradación Ambiental , Celulosa/metabolismo , Colorantes/metabolismo , Lignina/metabolismo , Peroxidasas/metabolismo , Pseudomonas/enzimología , China , Biología Computacional , Ingeniería Genética/métodos , Microscopía Electrónica de Rastreo , Fenol/química , Filogenia , Polisacáridos , Madera/metabolismo
12.
Int J Biol Macromol ; 103: 1173-1184, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28551435

RESUMEN

A novel exopolysaccharide (EPS), promisingly served as natural alternatives of commercial additives, was obtained from a culture of Lactobacillus plantarum KX041, a specie of lactic acid bacteria (LAB) regarded as Generally Recognized as Safe Foods (GRAS). However, the low yield severely hindered further study and application of the EPS. The influences of medium components and culture conditions were investigated and the optimal conditions of the EPS production were successfully obtained by response surface methodology (RSM). Maximum EPS production 599.52mg/mL (about 3 folds than the original production) was obtained at optimal conditions of soybean peptone (20g/L), fermentation temperature (35°C) and initial pH (6.38). The EPS had a molecular weight of 38.67 KDa and it consisted of arabinose, mannose, glucose and galactose in a molar ratio of 0.95:12.94:7.26:3.31. A specific spectrogram of neutral polysaccharide was obtained by FT-IR analysis, and the EPS also exhibited higher thermal stability with a degradation temperature of 289.01°C in DSC analysis. A comprehensive investigation of antioxidant activity in vitro indicated that the EPS possessed superior antioxidant activity with the EC50 value of ABTS, DPPH, hydroxyl and superoxide free radical scavenging were 0.2, 1.4, 1.7 and 5.6mg/mL, respectively. Furthermore, combined with reducing power analysis, it suggested that the EPS not only acted as electrons donor to directly react with free radicals, but also exerted antioxidant activity with other mechanisms which need to be studied further. All these results collectively shown that as a natural compound, the EPS produced by Lactobacillus plantarum KX041 had a great potential to be developed as natural antioxidants or functional additive in food industry.


Asunto(s)
Antioxidantes/química , Lactobacillus plantarum/química , Polisacáridos Bacterianos/química , Radicales Libres/química , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...