Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Adv Mater ; : e2405956, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819626

RESUMEN

Despite widely used as a commercial cathode, the anisotropic one-dimensional channel hopping of lithium ions along the [010] direction in LiFePO4 prevent its application in fast charging conditions. Herein, we employ an ultra-fast non-equilibrium high-temperature shock (HTS) technology to controllably introduce the Li-Fe anti-site defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe anti-site defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new two-dimensional diffusion path. In the combination of electrochemical experiments and first-principles calculations, we demonstrate that the unique multi-scale coupling structure of Li-Fe anti-site defects and lattice strain promotes isotropic two-dimensional inter-channel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multi-scale coupling can guide the design of high-rate electrodes. This article is protected by copyright. All rights reserved.

2.
ACS Appl Mater Interfaces ; 16(17): 22256-22264, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651607

RESUMEN

In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.

3.
Angew Chem Int Ed Engl ; 63(23): e202405405, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578834

RESUMEN

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

4.
Small ; : e2310756, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361223

RESUMEN

P2-phase layered cathodes play a pivotal role in sodium-ion batteries due to their efficient Na+ intercalation chemistry. However, limited by crystal disintegration and interfacial instability, bulk and interfacial failure plague their electrochemical performance. To address these challenges, a structural enhancement combined with surface modification is achieved through trace Y doping. Based on a synergistic combination of experimental results and density functional theory (DFT) calculations, the introduction of partial Y ions at the Na site (2d) acts as a stabilizing pillar, mitigating the electrostatic repulsions between adjacent TMO2 slabs and thereby relieving internal structural stress. Furthermore, the presence of Y effectively optimizes the Ni 3d-O 2p hybridization, resulting in enhanced electronic conductivity and a notable rapid charging ability, with a capacity of 77.3 mA h g-1 at 40 C. Concurrently, the introduction of Y also induces the formation of perovskite nano-islands, which serve to minimize side reactions and modulate interfacial diffusion. As a result, the refined P2-Na0.65 Y0.025 [Ni0.33 Mn0.67 ]O2 cathode material exhibits an exceptionally low volume variation (≈1.99%), an impressive capacity retention of 83.3% even at -40 °C after1500 cycles at 1 C.

5.
Nat Commun ; 15(1): 1005, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307899

RESUMEN

Potassium-sulfur batteries attract tremendous attention as high-energy and low-cost energy storage system, but achieving high utilization and long-term cycling of sulfur remains challenging. Here we show a strategy of optimizing potassium polysulfides for building high-performance potassium-sulfur batteries. We design the composite of tungsten single atom and tungsten carbide possessing potassium polysulfide migration/conversion bi-functionality by theoretical screening. We create two ligand environments for tungsten in the metal-organic framework, which respectively transmute into tungsten single atom and tungsten carbide nanocrystals during pyrolysis. Tungsten carbide provide catalytic sites for potassium polysulfides conversion, while tungsten single atoms facilitate sulfides migration thereby significantly alleviating the insulating sulfides accumulation and the associated catalytic poisoning. Resultantly, highly efficient potassium-sulfur electrochemistry is achieved under high-rate and long-cycling conditions. The batteries deliver 89.8% sulfur utilization (1504 mAh g-1), superior rate capability (1059 mAh g-1 at 1675 mA g-1) and long lifespan of 200 cycles at 25 °C. These advances enlighten direction for future KSBs development.

6.
J Colloid Interface Sci ; 660: 246-256, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244493

RESUMEN

Although lithium-sulfur batteries (LSBs) are an attractive next-generation rechargeable battery with high theoretical energy density (2600 Wh kg-1) and specific capacity (1675 mA h g-1), the shuttle of soluble lithium polysulfides (LiPSs) is still the protruding obstacle to accelerate the redox reaction of LSBs. Here, cubic cobalt diselenide@carbon (CoSe2@C) derived from zeolite imidazole framework-67 (ZIF-67) was employed as the functional coating of polypropylene (PP) separator to efficiently adsorb and catalyze polysulfides, inhibit "shuttle effect" and improve the electrochemical reaction kinetics of LSBs. The CoSe2@C offers larger mesopore proportion of 77.19 % and abundant active sites to ensure space as a secondary reaction region, and infiltration of electrolyte and rapid transport of Li+. The involved adsorption and catalysis effect are discussed by static adsorption experiment, XPS, and Li2S nucleation kinetics analysis. The results show that CoSe2@C exhibits strong adsorption effect and catalytic activity on LiPSs, and CoSe2@C/PP cells display fast Li+ diffusion and improved redox kinetics (high Li2S nucleation peak current of 0.27 mA and deposition capacity of 148.46 mA h g-1). Ascribe to these advantages, the CoSe2@C/PP cell provides an initial discharge specific capacity of 1335.01 mA h g-1 at 0.1 C and a fine reversible capacity at 5.0 C, and achieves stable and durable lifespan with an average capacity decay rate of 0.12 % over 400 cycles at 0.5 C. This work could promote the practical application of metal selenides in the key components and devices for LSBs.

7.
Nanomicro Lett ; 16(1): 97, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285078

RESUMEN

Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.

8.
Curr Drug Saf ; 19(2): 309-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37254553

RESUMEN

BACKGROUND: Osimertinib is a third-generation Tyrosine Kinase inhibitor, mainly used in non-small cell lung cancer with EGFR mutation. Its efficacy and safety have been confirmed by clinical practice. Toxic epidermolysis necrotizing disease (TEN) is a severe drug eruption that is rare in clinics and has a high mortality rate. Toxic epidermal necrotic drug rash caused by Osimeritinib is even rarer. OBJECTIVE: To investigate the rare side effects of Osimertinib through a case of toxic Epidermal necrosis. CASE PRESENTATION: A 63-year-old female patient was diagnosed with lung adenocarcinoma with brain metastases, and genetic testing revealed an EGFR21 exon mutation. The disease progressed 24 days after the administration of gefitinib, then the patient switched to Osimertinib (80 mg QD) and, resulting in keratitis and secondary systemic toxic epidermolysis necrotizing disease (TEN). Finally, the patient died. CONCLUSION: Although the clinical use of osimertinib is becoming widespread, the side effects may not be fully understood. Clinicians should pay more attention to the occurrence of the side reaction and deal with it in time.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Erupciones por Medicamentos , Neoplasias Pulmonares , Enfermedades de la Piel , Femenino , Humanos , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Preparaciones Farmacéuticas , Antineoplásicos/efectos adversos , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Enfermedades de la Piel/tratamiento farmacológico , Necrosis/inducido químicamente , Necrosis/tratamiento farmacológico
9.
World J Surg ; 47(12): 3240-3249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792039

RESUMEN

BACKGROUND: This study aimed to investigate the potential of a combined score based on CYFRA 21-1 level and LMR as a prognostic predictor for patients with ESCC. METHODS: A total of 460 patients who underwent esophagectomy were analyzed, and three groups were established based on the CA-LMR score. OS and RFS were evaluated using the Kaplan-Meier analysis, and associated factors were analyzed by univariate and multivariate Cox analysis. A mpStage system was also established based on the CA-LMR score. RESULTS: The allocation of CA-LMR score of 0, 1, and 2 was 107 (23.3%), 280 (60.9%), and 73 (15.9%). There was a significant association between CA-LMR and male gender (P = 0.001), lower BMI (P = 0.035), longer tumor lesions (P = 0.002), and high pT, pN, pStage (P < 0.001, P = 0.011, P = 0.001). The 5-year OS rates for CA-LMR scores of 0, 1, and 2 were 75.4%, 60.2%, and 32.8%, respectively (P < 0.001). Multivariate analysis showed that CA-LMR score (P = 0.011) was an independent prognostic factor for OS. The proposed mpStage system, based on CA-LMR score, demonstrated superior discriminatory ability, monotonicity, homogeneity, and prognosis prediction ability over AJCC 8th pStage system. CONCLUSIONS: The CA-LMR score, combined with tumor marker and inflammatory index, could use as a potential prognostic indicator; moreover, our modified pStage system exhibited superior stratification and prognostic accuracy for patients with ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Masculino , Carcinoma de Células Escamosas de Esófago/cirugía , Carcinoma de Células Escamosas de Esófago/patología , Pronóstico , Monocitos/patología , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Linfocitos/patología , Estudios Retrospectivos
10.
Medicine (Baltimore) ; 102(36): e34665, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682186

RESUMEN

Flavonoids have been shown to be beneficial in a variety of inflammatory and metabolic diseases because of their anti-inflammatory and antioxidant properties. However, previous epidemiological studies have only demonstrated a negative correlation between flavonoid intake on inflammatory markers, and the optimal intake of dietary flavonoids and subclasses in terms of dietary anti-inflammatory efficacy remains undetermined. This study was based on 3 cycles (2007-2010, 2017-2018) of the National Health and Nutrition Examination Survey and the corresponding expanded flavonoid database. Weighted multiple linear regression was used to assess linear relationships between flavonoid intake and Dietary inflammation index (DII). Smoothed curve fit and a generalized additive model were used to investigate the nonlinear relationships and threshold effects, the 2-tailed linear regression model was used to find potential inflection points. A total of 12,724 adults were included in the study. After adjusting for potential confounders, flavonoid intake was significantly associated with DII, with the strongest negative association effect for flavonols (-0.40 [-0.45, -0.35]). In subgroup analyses stratified by sex, race, age, body mass index, education levels, and diabetes, flavonol intake maintained a significant negative linear correlation with DII. In addition, we found significant nonlinear relationships (L-shaped relationships) and threshold effects between total flavonoids, flavan-3-ols, and flavanols and DII, with inflection points of 437.65 mg/days, 157.79 mg/days, and 46.36 mg/days, respectively. Our results suggest a threshold for the dietary anti-inflammatory capacity of flavonoid intake in U.S. adults.


Asunto(s)
Flavonoides , Polifenoles , Adulto , Humanos , Encuestas Nutricionales , Antioxidantes , Índice de Masa Corporal , Inflamación
11.
NPJ Precis Oncol ; 7(1): 80, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37634047

RESUMEN

The genomic origin and development of the biphasic lung adenosquamous carcinoma (ASC) remain inconclusive. Here, we derived potential evolutionary trajectory of ASC through whole-exome sequencing, Stereo-seq, and patient-derived xenografts. We showed that EGFR and MET activating mutations were the main drivers in ASCs. Phylogenetically, these drivers and passenger mutations found in both components were trunk clonal events, confirming monoclonal origination. Comparison of multiple lesions also revealed closer genomic distance between lymph node metastases and the ASC component with the same phenotype. However, as mutational signatures of EGFR-positive lung squamous carcinomas (LUSCs) were more comparable to EGFR-positive ASCs than to wild-type LUSCs, we postulated different origination of these LUSCs, with ASC being the potential intermediate state of driver-positive LUSCs. Spatial transcriptomic profiling inferred transformation from adenocarcinoma to squamous cell carcinoma, which was then histologically captured in vivo. Together, our results explained the development of ASC and provided insights into future clinical decisions.

12.
ACS Appl Mater Interfaces ; 15(24): 29064-29071, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293868

RESUMEN

Organic electrode materials are composed of abundant elements, have diverse and designable molecular structures, and are relatively easily synthesized, promising a bright future for low-cost and large-scale energy storage. However, they are facing low specific capacity and low energy density. Herein, we report a high-energy-density organic electrode material, 1,5-dinitroanthraquinone, which is composed of two kinds of electrochemically active sites of nitro and carbonyl groups. They experience six- and four-electron reduction and are transformed into amine and methylene groups, respectively, in the presence of fluoroethylene carbonate (FEC) in the electrolyte. Drastically increased specific capacity and energy density are demonstrated with an ultrahigh specific capacity of 1321 mAh g-1 and a high voltage of ∼2.62 V, corresponding to a high energy density of 3400 Wh kg-1. This surpasses the electrode materials in commercial lithium batteries. Our findings provide an effective strategy to design high-energy-density and novel lithium primary battery systems.

13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 278-283, 2023 May 30.
Artículo en Chino | MEDLINE | ID: mdl-37288628

RESUMEN

A protective device was designed that can be worn on the elderly, which consists of protective airbag, control box and protective mechanism. The combined acceleration, combined angular velocity and human posture angle are selected as the parameters to determine the fall, and the threshold algorithm and SVM algorithm are used to detect the fall. The protective mechanism is an inflatable device based on CO2 compressed air cylinder, and the equal-width cam structure is applied to its transmission part to improve the puncture efficiency of the compressed gas cylinder. A fall experiment was designed to obtain the combined acceleration and angular velocity eigenvalues of fall actions (forward fall, backward fall and lateral fall) and daily activities (sitting-standing, walking, jogging and walking up and down stairs), showing that the specificity and sensitivity of the protection module reached 92.1% and 84.4% respectively, which verified the feasibility of the fall protection device.


Asunto(s)
Monitoreo Ambulatorio , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Actividades Cotidianas , Caminata , Aceleración , Algoritmos
14.
Adv Sci (Weinh) ; 10(23): e2302490, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37300359

RESUMEN

Organic electrode materials for lithium-ion batteries have attracted significant attention in recent years. Polymer electrode materials, as compared to small-molecule electrode materials, have the advantage of poor solubility, which is beneficial for achieving high cycling stability. However, the severe entanglement of polymer chains often leads to difficulties in preparing nanostructured polymer electrodes, which is vital for achieving fast reaction kinetics and high utilization of active sites. This study demonstrates that these problems can be solved by the in situ electropolymerization of electrochemically active monomers in nanopores of ordered mesoporous carbon (CMK-3), combining the advantages of the nano-dispersion and nano-confinement effects of CMK-3 and the insolubility of the polymer materials. The as-prepared nanostructured poly(1-naphthylamine)/CMK-3 cathode exhibits a high active site utilization of 93.7%, ultrafast rate capability of 60 A g-1 (≈320 C), and an ultralong cycle life of 10000 cycles at room temperature and 45000 cycles at -15 °C. The study herein provides a facile and effective method that can simultaneously solve both the dissolution problem of small-molecule electrode materials and the inhomogeneous dispersion issue of polymer electrode materials.

15.
Materials (Basel) ; 16(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241417

RESUMEN

In this study, a micro-nano TaC ceramic steel matrix reinforced layer was prepared by an in situ reaction between a pure tantalum plate and GCr15 steel. The microstructure and phase structure of the in situ reaction reinforced layer of the sample at 1100 °C and reaction time 1 h were characterized with FIB micro-section, TEM transmission, SAED diffraction pattern, SEM and EBSD. The phase composition, phase distribution, grain size, grain orientation and grain boundary deflection, phase structure and lattice constant of the sample were characterized in detail. The results show that the phase composition of the Ta sample is Ta, TaC, Ta2C and α-Fe. TaC is formed after Ta and carbon atoms meet, and the orientation changes in the X and Z directions. The grain size of TaC is widely in the range of 0~0.4 µm, and the angular deflection of TaC grain is not obvious. The high-resolution transmission structure, diffraction pattern and interplanar spacing of the phase were characterized, and the crystal planes of different crystal belt axes were determined. The study provides technical and theoretical support for further research on the preparation technology and microstructure of the TaC ceramic steel matrix reinforcement layer.

17.
Small Methods ; 7(9): e2300228, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150838

RESUMEN

Lithium metal batteries (LMBs) are viewed as one of the most promising high energy density battery systems, but their practical application is hindered by significant fire hazards and fast performance degradation due to the lack of a safe and compatible configuration. Herein, nonflammable quasi-solid electrolytes (NQSEs) are designed and fabricated by using the in situ polymerization method, in which 1,3,2-dioxathiolan-2,2-oxide is used as both initiator to trigger the in situ polymerization of solvents and interphase formation agent to construct robust interface layers to protect the electrodes, and triethyl phosphate as a fire-retardant agent. The NQSEs show a high ionic conductivity of 0.38 mS cm-1 at room temperature and enable intimate solid-electrolyte interphases, and demonstrate excellent performance with stable plating/striping of Li metal anode, and high voltage (4.5 V) and high temperature (>60 °C) survivability. The findings provide an effective strategy to build high-temperature, high-energy density, and safe quasi-solid LMBs.

18.
Adv Mater ; 35(29): e2301171, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37027161

RESUMEN

Lithium-metal batteries (LMBs) using lithium-metal anodes and high-voltage cathodes have been deemed as one of the most promising high-energy-density battery technology. However, its practical application is largely hindered by the notorious dendrite growth of lithium-metal anodes, the fast structure degradation of the cathode, and insufficient electrode-electrolyte interphase kinetics. Here, a dual-anion regulated electrolyte is developed for LMBs using lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and lithium difluoro(bisoxalato)phosphate (LiDFBOP) as anion regulators. The incorporation of TFSI- in the solvation sheath reduces the desolvation energy of Li+ , and DFBOP- promotes the formation of highly ion-conductive and sustainable inorganic-rich interphases on the electrodes. Significantly enhanced performance is demonstrated on Li||LiNi0.83 Co0.11 Mn0.06 O2 pouch cells, with 84.6% capacity retention after 150 cycles in 6.0 Ah pouch cells and an ultrahigh rate capability up to 5 C in 2.0 Ah pouch cells. Furthermore, a pouch cell with an ultralarge capacity of 39.0 Ah is fabricated and achieves an ultrahigh energy density of 521.3 Wh kg-1 . The findings provide a facile electrolyte design strategy for promoting the practical utilization of high-energy-density LMBs.

19.
Water Sci Technol ; 87(7): 1713-1731, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37051793

RESUMEN

In this article, COD, volatile phenol and ammonia nitrogen concentrations of the wastewater from semicarbon are reported as 38,000; 6,400 and 5,700 mg/L, respectively. According to the field test, when the pH of the wastewater is 9, the field test temperature is 20 °C, the adsorption time is 30 min and the optimal dosing ratio of nitrogen-doped gasification slag (HX-NGS) to the wastewater is 1:4, HX-NGS has the best removal effect on COD, volatile phenol and ammonia nitrogen in the wastewater from the semicarbon. The removal rates of COD, volatile phenol and ammonia nitrogen are 94, 91 and 85%, respectively, and the concentrations of the remaining COD, volatile phenol and ammonia nitrogen are 2,280, 576 and 855 mg/L, respectively, after regeneration, the material HX-NGS has a good effect on the treatment of the wastewater from the semicarbon. The reuse rate of the adsorption material is at least eight times. The adsorption effect of the material HX-NGS conforms to the mechanism law of dynamics and thermodynamics.


Asunto(s)
Carbono , Aguas Residuales , Adsorción , Amoníaco , Fenol , Fenoles , Nitrógeno , Reactores Biológicos
20.
Materials (Basel) ; 16(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903001

RESUMEN

Traditional experiments are difficult to accurately and quantitatively measure the interfacial properties of composites, such as interfacial bonding strength, interfacial microelectronic structure, and other information. It is particularly necessary to carry out theoretical research for guiding the interface regulation of Fe/MCs composites. In this research, the first-principles calculation method is used to systematically study the interface bonding work; however, in order to simplify the first-principle calculation of the model, dislocation is not considered in this paper, including interface bonding characteristics and electronic properties of α-Fe- and NaCl-type transition metal carbides (Niobium Carbide (NbC) and Tantalum Carbide (TaC)). The interface energy is related to the bond energy between the interface Fe atoms, C atoms and metal M atoms, and the interface energy Fe/TaC < Fe/NbC. The bonding strength of the composite interface system is accurately measured, and the interface strengthening mechanism is analyzed from the perspectives of atomic bonding and electronic structure, which provides a scientific guiding ideology for regulating the interface structure of composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...