Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J BUON ; 17(3): 526-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23033294

RESUMEN

PURPOSE: To quantify the dosimetric consequences of pancreatic tumor motion on the pancreatic intensity-modulated radiation therapy (IMRT) plans. METHODS: Dose map of IMRT plans for 5 patients with pancreatic cancer were measured using a 2D diode array placed on a computer-controlled platform to simulate 2D pancreatic tumor motion. Dosimetric analysis was then performed to obtain IMRT quality assurance (QA) passing rates. The convolution method, which used a motion kernel to simulate 2D pancreatic motion, was also applied to the treatment and phantom verification plans for a wide range of magnitudes of motion (0.8-2.0 cm). The resulting motion-convolved verification dose maps (VDMs) were compared with the dynamic measurements to evaluate IMRT QA passing rates as well as the dose-volume histogram, the V95% of the planning target volume (PTV) and V98% of the clinical target volume (CTV). RESULTS: While CTV coverage was maintained when the simulated pancreatic tumor drifted inside the PTV with magnitudes of 1.0 cm and 1.5 cm, the V95% of the PTV was reduced by 10% and 17%, respectively. We also found that the differences between the measurements and the static VDMs increased proportional to the amplitude of motion, while the agreement between the measurements and the motion-convolved VDMs was excellent for any magnitude of motion. CONCLUSIONS: When the 4D technique is not available, predetermined margins must be used carefully to avoid possible under-dose to the target. Additionally, the phantom results show that the kernel convolution method provides an accurate evaluation of the dosimetric impact due to tumor motion and it should be employed in the planning process.


Asunto(s)
Neoplasias Pancreáticas/radioterapia , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/normas
2.
Cancer Res ; 60(19): 5464-9, 2000 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11034089

RESUMEN

The DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) has been shown to protect cells from the toxic and mutagenic effect of alkylating agents by removing lesions from the O6 position of guanine. O6-Benzylguanine (BG) is a potent inactivator of AGT, resulting in an increase in the sensitivity of cells to the toxic effects of chemotherapeutic alkylating agents. Chinese hamster ovary (CHO) cells and CHO cells transfected with wild-type AGT (CHOWTAGT) and a mutant AGT [P138 M/V139I/P140K (CHOMIK)] known to be resistant to BG were treated with BG and various alkylating agents. BG treatment alone dramatically decreased AGT activity in CHOWTAGT cells but resulted in no depletion in AGT activity in CHOMIK cells. In the absence of AGT, these cells are highly sensitive to the toxic and mutagenic effects of temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and no further sensitization occurs in the presence of BG. In contrast, CHOWTAGT cells are resistant to temozolomide and BCNU, and treatment with BG resulted in a significantly higher cell killing and mutation frequency. CHOMIK cells were completely resistant to temozolomide or BCNU in the presence and absence of BG. Both cell killing and mutation frequency of 4-hydroperoxycyclophosphamide (4-HC) in CHO, CHOWTAGT, and CHOMIK cells were increased in the presence of BG. 4-HC generates two active metabolites, phosphoramide mustard (PM) and acrolein. BG had no effect on 4hydroperoxydidechlorocyclophosphamide (which generates acrolein and a nonalkylating form of PM) in CHO cells and CHOMIK cells, but enhancement of toxicity was observed with PM in both these cell lines. Therefore, we attribute the enhancement to the PM metabolite of 4-HC. Our results demonstrate that wild-type AGT plays an important role in protecting against the toxic and mutagenic effect of O6 alkylating agents and that a mutant AGT resistant to inactivation by BG effectively prevents BG-enhanced toxicity and mutagenicity induced by these agents. Expression of the AGT protein contributes to resistance of 4-HC. BG also enhances the toxicity of 4-HC and PM by a mechanism that may not involve the AGT repair protein.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Ciclofosfamida/análogos & derivados , Dacarbazina/análogos & derivados , Inhibidores Enzimáticos/toxicidad , Guanina/análogos & derivados , Guanina/toxicidad , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Animales , Células CHO/efectos de los fármacos , Células CHO/enzimología , Carmustina/toxicidad , Cricetinae , Ciclofosfamida/toxicidad , Dacarbazina/toxicidad , Interacciones Farmacológicas , Pruebas de Mutagenicidad , Mutágenos/toxicidad , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/genética , Temozolomida
3.
Cancer Res ; 60(18): 5187-95, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-11016647

RESUMEN

Direct reversal of O6 adducts caused by chemotherapy agents is accomplished in mammalian cells by the protein O6-methylguanine DNA methyltransferase (MGMT). Some tumors overexpress MGMT and are resistant to alkylator therapy. One future approach to treatment of these tumors may rely on concurrent pharmacological depletion of tumor MGMT with O6-benzylguanine (6-BG) and protection of sensitive tissues, such as hematopoietic stem and progenitor cells, using genetic modification with 6-BG-resistant MGMT mutants. We have used retroviral-mediated gene transfer to transduce murine hematopoietic bone marrow cells with MGMT point mutants showing resistance to 6-BG depletion in vitro. These mutants include proline to alanine and proline to lysine substitutions at the 140 position (P140A and P140K, respectively), which show 40- and 1000-fold resistance to 6-BG compared with wild-type (WT) MGMT. Lethally irradiated mice were reconstituted with murine stem cells transduced with murine stem cell virus retrovirus expressing each mutant, WT MGMT, or mock-infected cells and then treated with a combination of 30 mg/kg 6-BG and 10 mg/kg 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or with 40 mg/kg BCNU alone. Compared with mice treated with BCNU alone, significant myeloid toxicity and death occurred in mice reconstituted with mock-infected or WT MGMT (<0.1 probability of survival) or the P140A mutant (0.13 probability of survival) MGMT cDNAs. In contrast, after an initial period of mild cytopenia, mice reconstituted with the P140K mutant (0.83 probability of survival) recovered nearly normal blood counts, even during continued treatment. Comparison of peripheral blood neutrophils after completion of 5 weekly treatments in these animals showed a direct correlation between the treatment and in vivo selection for progeny of transduced cells (pretreatment, approximately 8-12% transduced cells; no treatment, approximately 6% transduced cells; BCNU only, 51% transduced cells; 6-BG/BCNU, 93% transduced cells). To determine whether this selection occurred at the stem cell level, bone marrow from each treatment group was infused into secondary recipients. Whereas animals that received bone marrow from untreated animals reconstituted with 2% transduced cells, animals receiving marrow from 6-BG/BCNU-treated animals reconstituted with 94% transduced cells, demonstrating nearly complete selection for stem cells in the primary animals. Mice reconstituted with marrow from animals treated with BCNU only demonstrated 23% transduced cells, consistent with partial selection of stem cells in the primary mice. The levels of transduced cells also correlated with survival during a second round of intensive combination chemotherapy (probability of survival: 6-BG/BCNU, 1.0; BCNU alone, >0.70; no treatment, <0.1). These data demonstrate that mutant MGMT expressed in the bone marrow can protect mice from time- and dose-intensive chemotherapy and that the combination of 6-BG and BCNU leads to uniform selection of transduced stem cells in vivo in mice.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Daño del ADN/fisiología , Guanina/análogos & derivados , Células Madre Hematopoyéticas/fisiología , O(6)-Metilguanina-ADN Metiltransferasa/genética , Mutación Puntual , Células 3T3 , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Trasplante de Médula Ósea , Carmustina/administración & dosificación , Reparación del ADN , Relación Dosis-Respuesta a Droga , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Guanina/administración & dosificación , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Humanos , Ratones , Ratones Endogámicos C57BL , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Ratas , Retroviridae/genética , Transducción Genética
4.
Mutat Res ; 452(1): 1-10, 2000 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-10894884

RESUMEN

The expression of the DNA repair protein human O(6)-alkylguanine-DNA alkyltransferase (AGT) in Escherichia coli strains GWR109 or TRG8 that lack endogenous AGT greatly increased the toxicity and mutagenicity of 1,2-dibromoethane (DBE). Pretreatment of strain TRG8 expressing human AGT, which is permeable to exogenous drugs, with the AGT inhibitor O(6)-benzylguanine (BG) abolished the lethal and mutagenic effects of DBE, indicating that an active AGT is required for promoting DBE genotoxicity. This was confirmed by the observation that E. coli expressing either the C145A AGT mutant, which is inactive due to loss of the alkyl acceptor site, or mutants Y114E and R128A, which are inactive due to alteration of the DNA binding domain, did not enhance the action of DBE. However, the AGT mutant protein P138M/V139L/P140K, which is active in repairing methylated DNA but is totally resistant to inactivation by BG due to alterations in the active site pocket, was unable to enhance the genotoxicity of DBE. Similarly, other mutants, G156P, Y158H and K165R that are strongly resistant to BG, were much less effective than wild type AGT in mediating the genotoxicity of DBE. Mutant P140A, which is moderately resistant to BG, did increase mutations in response to DBE but was less active than wild type. These results suggest that human AGT is able to interact with a DNA lesion produced by DBE but, instead of repairing it, converts it to a more genotoxic adduct. This interaction is prevented by mutations that modify the active site of AGT to exclude BG.


Asunto(s)
Escherichia coli/efectos de los fármacos , Dibromuro de Etileno/toxicidad , O(6)-Metilguanina-ADN Metiltransferasa/fisiología , ADN Recombinante/genética , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Humanos , Pruebas de Mutagenicidad , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/genética , Plásmidos , Transformación Genética
5.
Biochem J ; 347(Pt 2): 519-26, 2000 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-10749682

RESUMEN

The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), is inactivated by reaction with the pseudosubstrate, O(6)-benzylguanine (BG). This inactivation sensitizes tumour cells to chemotherapeutic alkylating agents, and BG is aimed at enhancing cancer treatment in clinical trials. Point mutations in a 24 amino acid sequence likely to form the BG-binding pocket were identified using a screening method designed to identify BG-resistant mutants. It was found that alterations in 21 of these residues were able to render AGT resistant to BG. These included mutations at the highly conserved residues Lys(165), Leu(168) and Leu(169). The two positions at which changes led to the largest increase in resistance to BG were Gly(156) and Lys(165). Eleven mutants at Gly(156) were identified, with increases in resistance ranging from 190-fold (G156V) to 4400-fold (G156P). Two mutants at Lys(165) found in the screen (K165S and K165A) showed 620-fold and 100-fold increases in resistance to BG. Two mutants at the Ser(159) position (S159I and S159V) were >80-fold more resistant than wild-type AGT. Eleven active mutants at Leu(169) were also resistant to BG, but with lower increases (5-86-fold). Fourteen BG-resistant mutants were found for position Cys(150), with 3-26-fold increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation. Six BG-resistant mutants at Asn(157) were found with increases of 4-13-fold. These results show that many changes can render human AGT resistant to BG without preventing the ability to protect tumour cells from therapeutic alkylating agents.


Asunto(s)
Sustitución de Aminoácidos/genética , Antineoplásicos/farmacología , Secuencia Conservada/genética , Guanina/análogos & derivados , Guanina/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Mutación Puntual/genética , Secuencia de Aminoácidos , Sitios de Unión , Reparación del ADN/efectos de los fármacos , Resistencia a Medicamentos/genética , Escherichia coli , Biblioteca de Genes , Humanos , Metilnitronitrosoguanidina/farmacología , Metilnitronitrosoguanidina/toxicidad , Datos de Secuencia Molecular , O(6)-Metilguanina-ADN Metiltransferasa/química , Alineación de Secuencia
6.
Biochem J ; 347(Pt 2): 527-34, 2000 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-10749683

RESUMEN

The role of lysine(165) in the activity of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), and the ability of AGT to react with the pseudosubstrate inhibitor, O(6)-benzylguanine (BG), was investigated by changing this lysine to all other 19 possibilities. All of these mutants (except for K165T, which could not be tested as it was too poorly active for assay in crude cell extracts) gave BG-resistant AGTs with increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation (ED(50)) from 100-fold (K165A) to 2400-fold (K165F). Lys(165) is a completely conserved residue in AGTs from many species, and all of the mutations at this site also reduced the ability to repair methylated DNA. The least deleterious change was that to arginine, which reduced the rate constant for DNA repair by approx. 2.5-fold. Mutant K165R resembled all of the other mutants in being highly resistant to BG, with an ED(50) value for inactivation by BG>200-fold greater than wild-type. Detailed studies of purified K165A AGT showed that the rate constant for repair and the binding to methylated DNA substrates were reduced by 10-20-fold. Despite this, the K165A mutant AGT was able to protect cells from alkylating agents and this protection was not abolished by BG. These results show that, firstly, lysine at position 165 is needed for optimal activity of AGT towards methylated DNA substrates and is essential for efficient reaction with BG; and second, even if the AGT activity towards methylated DNA substrates is impaired by mutations at codon 165, such mutants can protect tumour cells from therapeutic alkylating agents. These results raise the possibility that the conservation of Lys(165) is due to the need for AGT activity towards substrates containing more bulky adducts than O(6)-methylguanine. They also suggest that alterations at Lys(165) may occur during chemotherapy with BG and alkylating agents and could limit the effectiveness of this therapy.


Asunto(s)
Antineoplásicos/metabolismo , Secuencia Conservada/genética , Guanina/análogos & derivados , Guanina/metabolismo , Lisina/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Antineoplásicos/farmacología , Sitios de Unión , Células CHO , Carmustina/farmacología , Carmustina/toxicidad , Cricetinae , ADN/genética , ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Resistencia a Medicamentos/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Guanina/farmacología , Humanos , Lisina/genética , Metilnitronitrosoguanidina/farmacología , Metilnitronitrosoguanidina/toxicidad , Datos de Secuencia Molecular , Mutación/genética , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/genética , Unión Proteica , Alineación de Secuencia , Transfección
7.
Hum Gene Ther ; 10(17): 2769-78, 1999 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-10584923

RESUMEN

The G156A O6-alkylguanine-DNA alkyltransferase (AGT) mutant protein, encoded by the G156A O6-methylguanine-DNA methyltransferase gene (MGMT), is resistant to O6-benzylguanine (BG) inactivation and, after transduction into hematopoietic progenitors, transmits remarkable resistance to BG and BCNU. As a result, a clinical trial, in which the MGMT gene is transduced into CD34+ cells of patients with cancer, has been approved. A newly identified AGT mutation, P140K, generates dramatically increased BG resistance relative to G156A, and suggests that gene transfer of P140K may confer improved hematopoietic cell protection. To address this hypothesis, we measured BG + BCNU and BG + TMZ resistance in G156A, P140K, or P138M/V139L/P140K (MLK) MGMT-transduced K562 cells. In addition, we performed a detailed characterization of individual properties including BG resistance, activity, and protein stability of these mutants in human hematopoetic K562 cells and E86 retroviral producer cells. In K562 cell extracts, the MLK and P140K mutants retained full activity at doses up to 1 mM BG, while G156A had a BG ED50 of 15 microM, compared with 0.1 microM for wtAGT. In the absence of BG, the G156A protein possessed a 56% reduction in specific O6-methyltransferase activity compared with wtAGT. MLK, P140K, and wtAGT all possessed similar specific activities, although the O6-methyl repair rate of all mutants was reduced 4- to 13-fold relative to wtAGT. The wtAGT, MLK, and P140K proteins were stable, with half-lives of greater than 18 hr. In contrast, only 20% of the G156A protein was stable after 12 hr in cycloheximide and, interestingly, the remaining protein appeared to retain most of the activity present in non-cycloheximide-treated cells. Differences in BG resistance, activity, and stability between P140K, MLK, and G156A suggest that P140K may be the optimal mutant for drug resistance gene transfer. However, hematopoietic K562 cells transduced with MFG-G156A, P140K, or MLK had similar degrees of BG and BCNU as well as BG and TMZ resistance when treated with concentrations of BG (< or =25 microM) achieved in clinical trials, suggesting similar efficacy in many in vivo applications.


Asunto(s)
Antineoplásicos/farmacología , Carmustina/farmacología , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos , Terapia Genética , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/genética , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Interacciones Farmacológicas , Estabilidad de Enzimas , Expresión Génica , Guanina/farmacología , Humanos , Células K562 , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Transfección
8.
Biochem Pharmacol ; 58(8): 1279-85, 1999 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-10487529

RESUMEN

O6-Alkylguanine-DNA alkyltransferase (AGT) is a DNA repair protein that provides protection from alkylating agents such as dacarbazine, temozolomide, and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which are used for cancer chemotherapy. O6-Benzylguanine (BG) is an inhibitor of AGT that sensitizes tumors to these agents. BG is currently in clinical trials. It is possible that the presence of resistant forms of AGT may limit the effectiveness of this strategy. Previous studies have shown that the AGT mutant G160R, which may occur naturally as a result of a polymorphism in the AGT gene, is resistant to BG, whereas the mutants G160W and G160A are actually more sensitive to the inhibitor. To examine other mutations at this site, a random sequence was placed at codon 160 in the AGT cDNA, and a plasmid library was constructed to express these sequences in Escherichia coli. After selection with BG and N-methyl-N'-nitro-N-nitrosoguanidine, BG-resistant mutants were obtained and analyzed. Eleven different amino acid substitutions were found to impart BG resistance by this assay. The most resistant mutants contained histidine or arginine, which had EC50 values of 12 and 4.7 microM, respectively, compared with the wild-type EC50 of 0.08 microM, but nine other alterations led to at least a 10-fold rise in the EC50 value. Three additional mutations at codon 160 were constructed by site-directed mutagenesis, and these led to 6- to 11-fold increases in resistance to BG. Comparisons of the properties of mutants G160R and G160E showed that the presence of DNA enhanced the reaction with BG much more strongly when an acidic residue was present at this position. This may account for the lack of selection of the G160E mutation even though it did impart resistance to BG. These results indicate that many alterations of AGT at position 160 can lead to significant resistance to BG.


Asunto(s)
Codón , Inhibidores Enzimáticos/farmacología , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Sustitución de Aminoácidos , Antineoplásicos/farmacología , Células Cultivadas , Resistencia a Medicamentos , Escherichia coli , Guanina/farmacología , Humanos , Mutagénesis Sitio-Dirigida , O(6)-Metilguanina-ADN Metiltransferasa/genética
9.
Biochem Pharmacol ; 58(2): 237-44, 1999 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-10423163

RESUMEN

O6-Benzylguanine (BG) is an inactivator of human O6-alkylguanine-DNA alkyltransferase (AGT) currently undergoing clinical trials to enhance cancer chemotherapy by alkylating agents. Mutant forms of AGT resistant to BG in vitro were expressed in CHO cells to determine if they could impart resistance to killing by the combination of BG and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). All the BG-resistant mutant proteins tested (P140A, P140K, P138M/V139L/P140K, G156A, P140A/G160R, and G160R) showed a reduced rate of reaction with methylated DNA substrates in vitro. However, when expressed in equal amounts in CHO cells, mutants P140A, P140K, P138M/V139L/P140K, and G160R gave levels of protection from the chloroethylating agent BCNU equivalent to that of wild-type AGT. This indicates that a 10-fold reduction in rate constant did not prevent their ability to repair chloroethylated DNA in the cell. AGT activity was readily lost when CHO cells expressing wild-type AGT were exposed to BG or its 8-oxo metabolite (O6-benzyl-8-oxoguanine), but cells expressing mutants P140A or G160R required 30-fold higher concentrations and cells expressing mutants P140K or P138M/V139L/P140K were totally resistant. When cells were treated with 80 microM BCNU plus BG or 8-oxo-BG, those expressing wild-type AGT were killed when inhibitor concentrations of up to 500 microM were used, whereas cells expressing P140K or P138M/V139L/P140K showed no effect, and cells expressing P140A or G160R showed an intermediate resistance. These results suggest that: (i) appearance of BG-resistant mutant AGTs may be a problem during therapy, and (ii) the P140K mutant AGT is an excellent candidate for gene therapy approaches where expression of a BG-resistant AGT in hematopoietic cells is used to reduce toxicity.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carmustina/farmacología , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/genética , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetinae , Interacciones Farmacológicas , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Guanina/farmacología , Humanos , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo
10.
Cancer Res ; 59(7): 1514-9, 1999 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10197622

RESUMEN

The DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) protects cells from alkylation damage. O6-Benzylguanine (BG) is a potent inactivator of human AGT (ED50 of 0.1 microM) that is currently undergoing clinical trials to enhance chemotherapy by alkylating agents. In a screen of AGT mutants randomly mutated at position glycine-160, we found that the double mutant Y158H/G160A protected Escherichia coli from killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) even in the presence of BG and that the AGT activity of this mutant was strongly resistant to BG (ED50 of 180 microM). Because the single mutant G160A was not resistant to BG, this suggested that the presence of the charged histidine residue at position 158 was responsible. This hypothesis was confirmed by the construction of the single mutation Y158H. The Y158H-mutant AGT was slightly less active than wild-type AGT for the repair of methylated DNA in vitro, but it protected E. coli from killing by MNNG even in the presence of BG and had an ED50 for the inactivation by BG of 620 microM. In contrast, mutant Y158F had an ED5o of 0.2 microM. Previous studies (M. Xu-Welliver et al., Cancer Res., 58: 1936-1945, 1998) have shown that mutant P140K is highly resistant to BG (ED50 of >1200 microM). Models of human AGT suggest that the side chain of the lysine inserted into this mutant is close to tyrosine-158 and that the positively charged lysine side-chain may interfere with BG binding. The double mutants P140K/Y158H and P140K/Y158F resembled P140K and Y158H in being highly resistant to BG, but the use of a sensitive assay for reaction of BG with AGT indicated that their abilities to react were in the order P140K/ Y158H < P140K < P140K/Y158F. These results confirm that the presence of a positively charged residue close to the active site of human AGT renders it highly resistant to BG without substantially affecting activity toward methylated DNA substrates. Such mutants may limit the value of BG therapy if they arise in malignant cells during chemotherapy, but the mutant sequences may be useful for gene therapy approaches in which BG-resistant human AGTs are used to prevent hematopoietic toxicity. At least 28 AGT sequences (from 25 species) have now been described. In 25 of these, the position equivalent to 158 in the human AGT is also a tyrosine, and in the other 3, it is a phenylalanine. The importance of an aromatic ring side chain at this position is emphasized by previous studies (S. Edara et al., Carcinogenesis, 16: 1637-1642, 1995), which show that the replacement by alanine renders human AGT inactive. Our results show that histidine can also substitute for tyrosine at this position.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Guanina/farmacología , Histidina , Humanos , Mutagénesis Sitio-Dirigida , O(6)-Metilguanina-ADN Metiltransferasa/química , Relación Estructura-Actividad , Tirosina
11.
Cancer Res ; 58(9): 1936-45, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9581836

RESUMEN

The activity of O6-alkylguanine-DNA alkyltransferase (AGT) protects cells from killing by methylating or chloroethylating agents. AGT is strongly inhibited by O6-benzylguanine (ED50, 0.2 microM), and this drug is presently undergoing clinical trials to enhance chemotherapy by alkylating agents. Point mutations such as P140A (ED50, 5 microM) render AGT resistant to O6-benzylguanine (BG). Selection for such mutants may prove to be a problem in the use of BG, and a better knowledge of the factors underlying resistance to BG will enable the rational design of improved inhibitors able to inactivate these mutants. BG-resistant AGT mutants may also be valuable for expression in bone marrow stem cells to reduce myelosuppression brought about by alkylating agents, to increase the therapeutic index of therapies including BG, and for use as a selectable marker to allow other genes to be expressed in such stem cells. We have therefore set up a general screen to obtain such mutants by using the ability of AGT to protect Escherichia coli GWR109 lacking endogenous AGT from killing by N-methyl-N'-nitro-N-nitrosoguanidine. When the cells were rendered permeable to BG by mutating the lipopolysaccharide membrane component forming strain TRG8, the protection by AGT expression was abolished by treating the cells with BG. The known P140A mutant was used to test the system and was highly selected for by treatment with 50 microM BG and 40 microg/ml N-methyl-N'-nitro-N-nitrosoguanidine. The sequence coding for PVP at positions 138-140 in AGT was replaced with a random nucleotide sequence, and this library was used to transform TRG8. All of the 59 colonies analyzed having AGT activity that survived the selection from the pool of 36,000 transformants were resistant to BG. Many (69%) of these mutants contained lysine at position 140, and all of these showed the highest level of resistance with <10% loss of activity when crude cell extracts were incubated with 1.2 mM BG. This result was confirmed with three mutants (P138K/V139L/P140K, P138M/V139L/P140K, and P140K), which were purified to homogeneity. The next most common residues found at position 140 were arginine (7%) and asparagine (7%). Studies carried out with purified preparations of mutants P140R and P140N revealed that these mutations also provided resistance to BG but to a lesser extent than P140K (ED50s of 190 and 7 microM, respectively). These results indicate that: (a) this screening method can be used to evaluate BG resistance of single or multiple changes throughout the AGT sequence; and (b) replacement of proline-140 with lysine is the most effective point mutation at this site causing BG resistance and is more than 200 times more effective than replacement with alanine.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Guanina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/genética , Recuento de Colonia Microbiana , Cartilla de ADN/química , ADN Bacteriano/análisis , Farmacorresistencia Microbiana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Genes Bacterianos , Biblioteca Genómica , Guanina/metabolismo , Guanina/farmacología , Humanos , Mutagénesis Sitio-Dirigida , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Oligonucleótidos Antisentido , Plásmidos , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...