Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 347: 119126, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778063

RESUMEN

Pollution source identification is vital in water safety management. An integrated simulation-optimization modelling framework comprising a process-based hydrodynamic water quality model, artificial neural network surrogate model and particle swarm optimization (PSO) was proposed to achieve rapid, accurate and reliable pollution source identification. In this study, the hydrodynamics and water quality processes in a straight lab-based flume were simulated to test pollution source identification under steady flow conditions. Additionally, the pollution source identification in the unsteady flow conditions was examined using a real-life estuary, specifically the Yangtze River estuary. First, we developed two process-based models to simulate hydrodynamics and water quality in the flume and estuary. Then, the data generated from the process-based models were used to develop surrogate models. Three typical artificial neural networks (ANNs) algorithms: backpropagation (BP), radial basis function (RBF) and general regression neural networks (GRNN) were selected to develop surrogates for process-based models (PBMs), and they were coupled with PSO algorithm to achieve the hybrid modelling framework for pollution source identification. Our results showed that hybrid PBM-ANNs-PSO models could be applied to identify the pollution source and quantify release intensity in spatial distribution when the discharge type was assumed as the point source with a continuous release. Multiple-performance criteria metrics, in terms of the coefficient of determination, root-mean-square error, mean absolute error, evaluated the model performance as "Excellent prediction". The BP-PSO models consistently appear to be the top-performing source identification model within the developed models, with most cases of relative error (RE) values lower than 5%. The new insights from the hybrid modelling framework would provide useful information for the local government agency to make reasonable decisions regarding pollution source identification issues.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Simulación por Computador , Calidad del Agua , Ríos
2.
Environ Pollut ; 327: 121534, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001598

RESUMEN

Hazardous perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have become ubiquitous environmental persistent organic contaminants, posing serious threats to environmental health, which has led to the development of PFAA treatment methods. Wetland construction in combination with iron-carbon (CW-I), a low-maintenance and high-efficiency technology, may be capable of removing PFAAs through physico-biochemical processes. In this study, we aim to investigate the removal efficiency of PFAAs by CW-I as well as the critical functions of all components within the wetlands. Pairwise comparisons of iron-carbon and control groups revealed that iron-carbon significantly enhanced 15.9% for PFOA and 17.9% for PFOS absorption through phytouptake and substrate adsorption, with respective removal efficiencies of 71.8% ± 1.03% and 85.8% ± 1.56%. The generated iron ions stimulated plant growth and further enhanced phytouptake of PFAAs, with PFAAs accumulated primarily in root tissues with limited translocation. Observations of batch adsorption suggest that chemical and electrostatic interactions are involved in the iron-carbon adsorption process, with film and intraparticle diffusions being the rate-limiting events. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy revealed that PFAA adsorption by substrates occurs at the molecular level, as well as the occurrence of hydrophobic force effects and ligand exchanges during the iron-carbon adsorption process. Additionally, iron-carbon significantly altered the genera, phyla, and community structure of microorganisms, and some microorganisms and their extracellular polymers may possess ability to bind PFAAs. The information provided in this study contributes to our understanding of the PFAA removal processes in CW-I and enriched the classical cases of PFAA removal by CWs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Carbono , Humedales , Contaminantes Químicos del Agua/análisis , Hierro , Fluorocarburos/análisis
3.
J Environ Manage ; 332: 117421, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36739776

RESUMEN

Turbulence generated within the vegetated confluence system is important for water quality and river management. In this study, we conducted a series of experiments to explore the extent to which emergent rigid vegetation in the confluence channel influences hydrodynamic characteristics and contaminant transport. First, a series of tests with increasing discharge ratios (from 0.35, 0.5, and 1) was conducted to quantify the effects of the discharge ratio on hydrodynamic conditions within the vegetated confluence. Then, tests with different discharge ratios were also set up to explore how contaminants released locations and modes (line and point source) influence the transport and mixing of contaminants. The results showed that increasing the discharge ratio induced larger momentum in the confluence area. The increase in discharge ratio rendered the circulation stronger, and its position came earlier in the non-vegetative area. In addition, the dimensionless turbulent kinetic energy peaked near the interface of the non/vegetated zone. With the increase in the discharge ratio, the dimensionless turbulent kinetic energy was found to be smaller. In the contaminants transport tests, the results revealed larger discharge ratio could speed up contaminants transport and mixing. The applications from this study would be helpful to pollutant transport management in natural confluences.


Asunto(s)
Contaminantes Ambientales , Calidad del Agua , Ríos , Hidrodinámica
4.
J Environ Manage ; 317: 115390, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661881

RESUMEN

Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Organismos Acuáticos , China , Ciudades , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Persona de Mediana Edad , Ríos , Contaminantes Químicos del Agua/análisis
5.
Environ Res ; 212(Pt B): 113334, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452673

RESUMEN

Constructed wetlands (CWs) are often used to treat wastewater discharged from wastewater treatment plants (WWTPs), while emerging contaminants (such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) have been commonly discovered in WWTPs. However, no research has examined whether PFOA/OS (i.e. PFOA and PFOS) affects the performance of CW. Therefore, this study compared the nutrient removal efficiencies of four CWs with varied configurations under PFOA/OS and no PFOA/OS stress conditions. We found that CW containing plants or/and iron-carbon had higher removal efficiency for nutrients (except NH4+-N) than conventional CW in stable operation under wastewater without PFOA/OS. Plants or/and iron increased the nutrient removal efficiency by plant uptake, chemical reaction, and co-precipitation of iron hydroxides. In contrast, the iron-carbon inhibited the nitrification of nitrifying bacteria by consuming dissolved oxygen, converting NO3--N to NH4+-N. Although the removal efficiencies of nutrients by CWs differed after introducing PFOA/OS, the removal order was consistent with those before adding PFOA/OS. Plants or/and iron-carbon effectively increased CWs' resistance to PFOA/OS loading and toxicity, and the function of iron-carbon was superior to the plants. In addition, PFOA/OS reduced the abundances of microbes Hydrogenophaga, Pseudomonas, Sphingomonas, Nitrospira, and Candidatus_Accumulibacter that contributed to nutrient removal.


Asunto(s)
Fluorocarburos , Aguas Residuales , Bacterias , Carbono , Hierro , Nitrógeno/análisis , Nutrientes , Eliminación de Residuos Líquidos , Humedales
6.
Environ Pollut ; 293: 118575, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838873

RESUMEN

Perfluoroalkyl acids (PFAAs) have been ubiquitously detected in water bodies and are a cause of great public concern due to their adverse effects. This study investigated the long-term temporal-spatial trends of PFAAs in the water bodies of the entire Taihu Lake, and predicted PFAA concentrations for 2024. A field investigation conducted in 2021 and previous data allowed to derive trends over a broad temporal-spatial scale, which is often not feasible in short-term studies. In the 2009-2021 period, the most quantifiable PFAAs increased, among which perfluorooctanoic acid and perfluorohexanoic acid were predominant. As of 2021, the mean total concentration of ten PFAAs (∑10PFAA) showed a distinct spatial decreasing trend, moving from north to south within the lake, and similar spatial distribution patterns were also noted in other years. The main PFAA input and most serious contamination were concentrated in the northern region, due to the riverine inputs and clustering of PFAA-related industries. The ∑10PFAA concentration in the wet season was greater and presented a more uniform distribution pattern than that in the dry season, possibly due to the combined effects of the degradation of PFAA precursors, water inflow, rainfall, shipping activities, and a shallow water column. From 2009 to 2021 the ∑10PFAA concentration of the entire lake showed an increasing trend, but the rate of increase was significantly reduced. In addition, a grey model predicted that the mean ∑10PFAA concentration in the entire Taihu Lake will reach 431 ng/L in 2024, and the northern region will be affected by a more serious PFAA pollution in the future because it exhibited a high mean ∑10PFAA concentration of 426 ng/L in 2021. These findings provide novel insights into the temporal-spatial distribution of PFAAs in Taihu Lake, and could help regulators to formulate policy decisions in response to PFAA pollution.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Lagos , Ríos , Agua , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 798: 149332, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375265

RESUMEN

In this study, the occurrence, spatial distribution, potential sources, mass inventory, and ecological risk assessment of perfluoroalkyl acids (PFAAs) in surface sediments from the lower Yangtze River were investigated based on field and laboratory assays conducted in November 2019. The total concentrations of 13 target PFAAs (∑PFAAs) ranged from 13.83 to 20.33 ng/g dw, and perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were predominant in the surface sediments with average concentrations of 2.89 and 4.07 ng/g dw, respectively. The ∑PFAAs concentrations in pore-water ranged from 23.30 to 58.81 ng/L, and PFOA and PFOS were predominant with mean concentrations of 6.29 and 5.04 ng/L, respectively. The profiles of PFAAs composition in surface sediments showed limited difference. Results of fugacity model revealed that PFOS was in relative equilibrium, whereas PFOA exhibited a diffusion trend from sediments to water body. Correlation analysis and positive matrix factorization demonstrated that the main sources of ∑PFAAs were electroplating and fast-food packaging, degradation products and textile, mixed sources, and PFOA-based products. The mass inventory of ∑PFAAs was estimated to be 1680.72 kg, and the results of ecological risk assessments based on equilibrium partition and species sensitivity distribution methods suggested that the hazards of PFAAs in sediments to local aquatic organisms are low. However, the evaluation methods and control measures of PFAAs in surface sediments are still limited, requiring further research.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Caprilatos , China , Monitoreo del Ambiente , Fluorocarburos/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 28(40): 56686-56695, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34061271

RESUMEN

Stormwater runoff containing various pollutants exerts adverse effects on receiving water bodies and deteriorates the urban aquatic environment. Although numerous studies have been conducted on runoff pollution, research comparing its characteristics in cities with those in towns is rare in the literature. To close this gap, the present study was conducted. The instantaneous concentrations of ammonia-N, TN, TP, and COD during the rainfall events in the town were higher than those in the city in most conditions. The outfall concentrations increased with the increase of rainfall intensity. EMCs (the average value of EMC) and CV (coefficient of variation) of TN and DTN in the town were higher than those in the city, which may lie in the differences of urban environment planning and management, road cleaning methods, garbage disposal methods, industrial enterprise, etc. On the one hand, EMCs and CV of TP in the city's industrial areas were lowest among three functional areas, while on the other hand, in the town it was in the commercial areas rather than the industrial areas that EMCs and CV were the lowest, which may be caused by the low level of economic development of small towns in China. The concentrations of COD in the town were generally higher than that in the city. Compared with the city, the correlation among COD and various forms of N was stronger in the town, which may illustrate a stronger similarity of pollutant sources in the town. According to the results, road runoff in the town contributed more to urban aquatic pollution; thus, further research should concentrate on this particular type of runoff.


Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , China , Ciudades , Monitoreo del Ambiente , Lluvia , Contaminantes Químicos del Agua/análisis
9.
Water Sci Technol ; 81(9): 1961-1971, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32666949

RESUMEN

An extensive field survey was conducted in four types of road area to study heavy metals in road runoff. Eleven rainfall events were monitored from February 2011 to March 2012, which were classified into four categories according to the relationship between peak of the rainfall amount, rainfall duration, and average rainfall intensity. Runoff samples were collected from overpass sections, college areas, residential areas, and road sidewalks. Heavy metal concentrations were obtained to investigate the outflow laws governing heavy metals in runoff. The concentration fluctuations of seven heavy metals were monitored to assess the influence of rainfall characteristics on metal concentrations. To estimate the impact of heavy metals on the water environment, the event mean concentrations (EMCs) were determined to describe the overall pollution degree of heavy metal in runoff, and then the EMC values of heavy metals in runoff were compared with surface water environmental quality standard thresholds. The results indicate that the EMC values of heavy metals varied widely in different rainfall fields and under the same rainfall at different sampling points. Average rainfall intensity has a significant impact on the EMC of heavy metal outflow, followed by maximum rainfall intensity and rainfall amount.


Asunto(s)
Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Lluvia , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...