Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062672

RESUMEN

In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Filogenia , Animales , Peces Planos/genética , Peces Planos/clasificación
2.
J Am Chem Soc ; 146(30): 20963-20971, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031612

RESUMEN

In the realm of nanoscale materials design, achieving precise control over the dimensions of nanotubular architectures poses a substantial challenge. In our ongoing pursuit, we have successfully engineered a novel class of single-molecule nanotubes─isoreticular covalent organic pillars (iCOPs)─by stacking formylated macrocycles through multiple dynamic covalent imine bonds, guided by principles of reticular chemistry. Our strategic selection of rigid diamine linkers has facilitated the synthesis of a diverse array of iCOPs, each retaining a homologous structure yet offering distinct cavity shapes influenced by the linker choice. Notably, three of these iCOP variants feature continuous one-dimensional channels, exhibiting length-dependent host-guest interactions with α,ω-dibromoalkanes, and each presenting a distinct critical guest alkyl chain length threshold for efficient guest encapsulation. This newfound capability not only provides a platform for tailoring nanotubular structures with precision, but also opens new avenues for innovative applications in molecular recognition and the purification of complex mixtures.

3.
Biomimetics (Basel) ; 9(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921192

RESUMEN

Variable camber wing technology stands out as the most promising morphing technology currently available in green aviation. Despite the ongoing advancements in smart materials and compliant structures, they still fall short in terms of driving force, power, and speed, rendering mechanical structures based on kinematics the preferred choice for large long-range civilian aircraft. In line with this principle, this paper introduces a linkage-based variable camber trailing edge design approach. Covering coordinated design, internal skeleton design, flexible skin design, and drive structure design, the method leverages a two-dimensional supercritical airfoil to craft a seamless, continuous two-dimensional wing full-size variable camber trailing edge structure, boasting a 2.7 m span and 4.3 m chord. Given the significant changes in aerodynamic load direction, ground tests under cruise load utilize a tracking-loading system based on tape and lever. Results indicate that the designed single-degree-of-freedom Watt I mechanism and Stephenson III drive mechanism adeptly accommodate the slender trailing edge of the supercritical airfoil. Under a maximum cruise vertical aerodynamic load of 17,072 N, the structure meets strength requirements when deflected to 5°. The research in this paper can provide some insights into the engineering design of variable camber wings.

4.
J Hazard Mater ; 468: 133750, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368682

RESUMEN

The feasibility of using walnut shell biochar to mediate biodegradation of Cupriavidus nantongensis X1T for profenofos was investigated. The results of scanning electron microscopy, classical DLVO theory and Fourier transform infrared spectroscopy indicated that strain X1T was stably immobilized on biochar by pore filling, van der Waals attraction, and hydrogen bonding. Profenofos degradation experiments showed that strain X1T immobilized on biochar significantly decomposed profenofos (shortened the half-life by 5.2 folds) by promoting the expression of the degradation gene opdB and the proliferation of strain X1T. The immobilized X1T showed stronger degradation ability than the free X1T at higher initial concentration, lower temperature and pH. The immobilized X1T could maintain 83% of removal efficiency for profenofos after 6 reuse cycles in paddy water. Thus, X1T immobilized using walnut shell biochar as a carrier could be practically applied to biodegradation of organophosphorus pesticides present in agricultural water.


Asunto(s)
Cupriavidus , Juglans , Organotiofosfatos , Plaguicidas , Plaguicidas/metabolismo , Compuestos Organofosforados/metabolismo , Cupriavidus/genética , Carbón Orgánico/metabolismo , Biodegradación Ambiental , Agua
5.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631642

RESUMEN

Currently, decentralized redactable blockchains have been widely applied in IoT systems for secure and controllable data management. Unfortunately, existing works ignore policy privacy (i.e., the content of users' redaction policies), causing severe privacy leakage threats to users since users' policies usually contain large amounts of private information (e.g., health conditions and geographical locations) and limiting the applications in IoT systems. To bridge this research gap, we propose PFRB, a policy-hidden fine-grained redactable blockchain in decentralized blockchain-based IoT systems. PFRB follows the decentralized settings and fine-grained chameleon hash-based redaction in existing redactable blockchains. In addition, PFRB hides users' policies during policy matching such that apart from successful policy matching, users' policy contents cannot be inferred and valid redactions cannot be executed. Some main technical challenges include determining how to hide policy contents and support policy matching. Inspired by Newton's interpolation formula-based secret sharing, PFRB converts policy contents into polynomial parameters and utilizes multi-authority attribute-based encryption to further hide these parameters. Theoretical analysis proves the correctness and security against the chosen-plaintext attack. Extensive experiments on the FISCO blockchain platform and IoT devices show that PFRB achieves competitive efficiency over current redactable blockchains.

6.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833554

RESUMEN

Due to the strong absorption and attenuation of electromagnetic waves by water, radio communications and global positioning systems are lacking in the deep-sea environment. Therefore, underwater long-distance communications, positioning, detection and other functions depend on acoustic technology. In order to realize the above functions, the acoustic system of the Fendouzhe human occupied vehicle (HOV) is composed of eight kinds of sonars and sensors, which is one of the core systems of manned submersible. Based on the Jiaolong/Shenhai Yongshi HOVs, the acoustic system of the Fendouzhe HOV has been developed. Compared with the previous technology, there are many technical improvements and innovations: 10,000-m underwater acoustic communication, 10,000-m underwater acoustic positioning, multi-beam forward-looking imaging sonar, an integrated navigation system, etc. This study introduces the structure of the acoustic system of the Fendouzhe HOV and the technical improvements compared with the Jiaolong/Shenhai Yongshi HOVs. The results of the acoustic system are illustrated by the 10,000-m sea trails in the Mariana Trench from October to December 2020.


Asunto(s)
Acústica , Sonido , Humanos , Agua
7.
Sensors (Basel) ; 15(9): 21824-43, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26334278

RESUMEN

The rapid development of mobile Internet has offered the opportunity for WiFi indoor positioning to come under the spotlight due to its low cost. However, nowadays the accuracy of WiFi indoor positioning cannot meet the demands of practical applications. To solve this problem, this paper proposes an improved WiFi indoor positioning algorithm by weighted fusion. The proposed algorithm is based on traditional location fingerprinting algorithms and consists of two stages: the offline acquisition and the online positioning. The offline acquisition process selects optimal parameters to complete the signal acquisition, and it forms a database of fingerprints by error classification and handling. To further improve the accuracy of positioning, the online positioning process first uses a pre-match method to select the candidate fingerprints to shorten the positioning time. After that, it uses the improved Euclidean distance and the improved joint probability to calculate two intermediate results, and further calculates the final result from these two intermediate results by weighted fusion. The improved Euclidean distance introduces the standard deviation of WiFi signal strength to smooth the WiFi signal fluctuation and the improved joint probability introduces the logarithmic calculation to reduce the difference between probability values. Comparing the proposed algorithm, the Euclidean distance based WKNN algorithm and the joint probability algorithm, the experimental results indicate that the proposed algorithm has higher positioning accuracy.

8.
Neural Regen Res ; 9(18): 1703-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25374593

RESUMEN

The increase in neurotrophic factors after craniocerebral injury has been shown to promote fracture healing. Moreover, neurotrophic factors play a key role in the regeneration and repair of peripheral nerve. However, whether craniocerebral injury alters the repair of peripheral nerve injuries remains poorly understood. Rat injury models were established by transecting the left sciatic nerve and using a free-fall device to induce craniocerebral injury. Compared with sciatic nerve injury alone after 6-12 weeks, rats with combined sciatic and craniocerebral injuries showed decreased sciatic functional index, increased recovery of gastrocnemius muscle wet weight, recovery of sciatic nerve ganglia and corresponding spinal cord segment neuron morphologies, and increased numbers of horseradish peroxidase-labeled cells. These results indicate that craniocerebral injury promotes the repair of peripheral nerve injury.

9.
Neural Regen Res ; 7(3): 197-201, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25767499

RESUMEN

In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA