Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268712

RESUMEN

Energetic molecular crystals are widely applied for military and civilian purposes, and molecular forcefields (FF) are indispensable for treating the microscopic issues therein. This article reviews the three types of molecular FFs that are applied widely for describing energetic crystals-classic FFs, consistent FFs, and reactive FFs (ReaxFF). The basic principle of each type of FF is briefed and compared, with the application introduced, predicting polymorph, morphology, thermodynamics, vibration spectra, thermal property, mechanics, and reactivity. Finally, the advantages and disadvantages of these FFs are summarized, and some directions of future development are suggested.

2.
J Phys Chem A ; 126(4): 463-472, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35061375

RESUMEN

1,3,5,-Trinitro-1,3,5,-triazine (RDX) serves as an important energetic material and is widely used as various solid propellants and explosives. Understanding the thermal decomposition behaviors of various polymorphs of RDX at high pressure and high temperature is significantly important for safe storage and handling. The present work reveals the early thermal decay mechanisms of two polymorphs (α- and ε-forms) of RDX at high pressure and high temperature by ReaxFF reactive molecular dynamic simulations and climbing image nudged elastic band (CI-NEB) static calculations. It is found that the thermal decomposition rate has positive and negative effects on the pressure for α- and ε-RDX, respectively. This difference originates from the difference of pressure effect on the intermolecular H transfer of the two polymorphs, as we confirm that the bimolecular H transfer rather than the NO2 partition initiates the decay with a significantly lower energy barrier therein. This finding may be beneficial to understand the pressure and polymorph dependent effect on the decay of RDX and to develop a kinetic model for the combustion of solid RDX.

3.
J Phys Chem A ; 124(37): 7399-7410, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32830972

RESUMEN

The combination of Al nanoparticles (ANPs) and hydrogen peroxide (H2O2) can serve as environmentally friendly bipropellants and maximize the energetic benefits through harnessing heat release and chemical energy stored in H2. This work presents an atomic insight into the combustion mechanism of ANPs/H2O2. Two main paths, including the ANPs oxidation by H2O2 to produce H2 and Al oxides, and the catalytic decomposition of H2O2 on ANP surface to generate O2 and H2O, are confirmed to maintain the combustion. OH and HOO radicals as well as H2O, O2, H2, and Al oxides are detected as dominant intermediates and products therein. It is evidenced that higher temperature, smaller ANP size, and higher H2O2 concentration enhance the combustion. Moreover, atomic details show that the H desorption from ANPs/Al clusters is a critical step for both H2 production and ANP oxidation. In addition, microexplosion that has been confirmed in hot and dense O2 is not observed in H2O2, even with a high concentration, possibly due to a slower heat release. Besides, the observed excellent specific impulse of the ANP/H2O2 bipropellants could be attributed to the considerable H2 production, instead of heat release. This work is expected to present an overall atomic perspective about the combustion mechanism of ANP/H2O2 bipropellants.

4.
Phys Chem Chem Phys ; 21(5): 2397-2409, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30649112

RESUMEN

The intramolecular H transfer of energetic NO2-compounds has been recognized as a possible primary step in triggering molecular decomposition for a long time. Nevertheless, studies on H transfer in different complex situations are limited, lacking a comprehensive understanding of its role in NO2-compounds. In this work, twenty intramolecular H transfer reactions are studied for eighteen nitro compounds and compared with the NO2 partition in thermodynamics and kinetics. Three factors, including the high planarity of molecules, the short transfer distance between the target H and O atoms and the high protonation of the H atom are identified to facilitate H transfer. If H transfer is more kinetically favorable than NO2 partition, and if a reverse H transfer occurs with a barrier less than 30 kcal mol-1, we define it as a reversible one. In our study, for those impact insensitive nitro compounds with H50 larger than that of 2,4,6-trinitrotoluene, all of them are found to be accompanied with reversible H transfer, while the impact sensitive compounds are not. Accordingly, we propose that the reversible H transfer can effectively buffer the external stimuli against the molecular decomposition through chemical energy absorption/release. Beyond the conventional understanding that H transfer triggers molecular decomposition, this work builds a new correlation between reversible H transfer and the low impact sensitivity of energetic nitro-compounds.

5.
J Mol Model ; 24(5): 115, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29696379

RESUMEN

In this work, self-assembly mechanism of single-wall carbon nanotube (SWCNT) during the annealing process of hot gaseous carbon is presented using reactive force field (ReaxFF)-based reactive molecular simulations. A series of simulations were performed on the evolution of reactive carbon gas. The simulation results show that the reactive carbon gas can be assembled into regular SWCNT without a catalyst. Five distinct stages of SWCNT self-assembly are proposed. For some initial configurations, the CNT was found to spin at an ultra-high rate after the nucleation. Graphical abstract Self-assembly process of single-wall carbon nanotube from the annealing of hot gaseous carbon.

6.
Phys Chem Chem Phys ; 19(45): 30933-30944, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29136069

RESUMEN

Energetic ionic salts (EISs) are attracting extensive attention because of their ready preparation and some excellent properties and performances that are comparable to those of common explosives with neutral molecules. Hydroxylamine (HA) is protonated or ionized as H-HA+ and preferred to be introduced into EISs to form HA-based EISs with almost all kinds of anions since these EISs possess higher packing densities and thus more excellent detonation performances than others with the same anions. Moreover, relative to that of pure HA, the thermal stability of HA-based EISs is significantly enhanced. This significantly enhanced thermal stability can extend the application of HA via deprotonation of H-HA+ back to HA; however, the mechanism for stabilization of HA by salification remains unclear. Herein, we employed thermodynamic and kinetic calculations and molecular dynamics simulations to reveal the thermal stability mechanisms of many currently synthesized HA-based EISs and some previously reported EISs with inorganic anions as well as those of pure HA and its aqueous solution. As a result, we have found that the enhanced stability of HA-based EISs is mainly due to the ionization and separation of HA molecules themselves. That is, H-HA+, as an ionized product, is more molecularly stable than HA, with significantly strengthened covalent bonds. The separation of H-HA+ ions or HA molecules makes decomposition more difficult as decomposition initiation varies from bimolecular to unimolecular reactions of HA, with a significant increase in the energy barrier. We have, therefore, proposed a strategy for the stabilization of unstable systems, such as neutral N-rich energetic compounds, by ionization and separation to strengthen these systems and change the decomposition mechanism by increasing the energy barriers of trigger steps such that these barriers become more difficult to overcome, respectively.

7.
Phys Chem Chem Phys ; 19(46): 31054-31062, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29147689

RESUMEN

Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) is a new and attractive energetic material that outperforms numerous common explosives because of its excellent properties and performance, and is thus a promising candidate to replace some of them. Nevertheless, knowledge of its physico-chemical properties, in particular, the underlying mechanism for it undergoing external stimuli for complete decay still remains poor. In the present study, we ascertain a preferred slip system of (010)/[101] and a shear-induced phase transition of TKX-50 with the aid of theoretical calculations. In other words, a new phase of TKX-50, γ-TKX-50, is observed to be formed by shearing TKX-50 along a slip system of (010)/[101] or (010)/[101[combining macron]] with a space group of P21/a, elevated energy of 9.4 kcal mol-1 and a unit cell expanded 4%, relative to the original TKX-50. Moreover, γ-TKX-50 can most readily be formed by shearing TKX-50 along (010)/[101] with a lowest energy barrier of 18.6 kcal mol-1, which is much below that for TKX-50 decay. The predicted elastic constants of γ-TKX-50 verify its mechanical stability with decreased mechanical anisotropy relative to the original TKX-50. In addition, we find that, after phase transition, the hydrogen bonding is weakened, while the electrostatic repulsion of Hδ+Hδ+ increases, which disfavors the proton transfer from NH3OH+ to C2O2N82- to facilitate the thermal decay of TKX-50. This suggests that the shear-induced transition from TKX-50 to γ-TKX-50 can enhance thermal stability by elevating the energy barrier for proton transfer, potentially contributing to the low mechanical sensitivity of TKX-50. Hopefully, this study would enrich the insight into the underlying mechanism of TKX-50 against external thermal-mechanical stimuli. Moreover, in combination with the newly found heat-induced phase, the shear-induced phase observed in the present study and the original one, there are at least three phases for TKX-50.

8.
Chem Asian J ; 12(24): 3141-3149, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-28941360

RESUMEN

Constructing insensitive high-performance energetic coordination polymers (ECPs) with alkali/alkali-earth metal ions and a nitrogen-rich organic backbone has been proved to be a feasible strategy in this work. Six diverse dimensional novel ECPs (compounds 1-6) were successfully synthesized from NaI , CsI , CaII , SrII , BaII ions and a nitrogen-rich triheterocyclic 4,5-bis(tetrazol-5-yl)-2 H-1,2,3-triazole (H3 BTT). All compounds show outstanding stability and low sensitivity, the thermal stability of these ECPs are significantly improved as the structural reinforcement increases from 1D to 3D, in which the decomposition temperature of 3D BaII based compound 6 is as high as 397 °C. Long-term storage experiments show that compounds 5 and 6 are stable enough at high temperature. Moreover, the six compounds hold considerable detonation performances, in which CaII based compound 5 possesses the detonation velocity of 9.12 km s-1 , along with the detonation pressure of 34.51 GPa, exceeding those of most energetic coordination polymers. Burn tests further certify that the six compounds can be versatile pyrotechnics.

9.
Phys Chem Chem Phys ; 19(34): 23309-23317, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28825762

RESUMEN

Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (Td) of TKX-50 with increasing pressure (P) (Td = 6.28P2 + 12.94P + 493.33, Td and P in K and GPa, respectively, and R2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H+δH+δ of neighboring NH3OH+, with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular interactions.


Asunto(s)
Tetrazoles/química , Hidrógeno/química , Cinética , Simulación de Dinámica Molecular , Presión , Espectrometría Raman , Temperatura
10.
J Phys Chem A ; 120(22): 3929-37, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27182789

RESUMEN

We carried out reactive molecular dynamics simulations by ReaxFF to study the initial events of an insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) against various thermal stimuli including constant-temperature heating, programmed heating, and adiabatic heating to simulate TATB suffering from accidental heating in reality. Cluster evolution at the early stage of the thermal decomposition of condensed TATB was the main focus as cluster formation primarily occurs when TATB is heated. The results show that cluster formation is the balance of the competition of intermolecular collision and molecular decomposition of TATB, that is, an appropriate temperature and certain duration are required for cluster formation and preservation. The temperature in the range of 2000-3000 K was found to be optimum for fast formation and a period of preservation. Besides, the intra- and intermolecular H transfers are always favorable, whereas the C-NO2 partition was favorable at high temperature. The simulation results are helpful to deepen the insight into the thermal properties of condensed TATB.

11.
Phys Chem Chem Phys ; 17(17): 11469-80, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854895

RESUMEN

C black is a class of substantial materials with a long history of applications. However, apart from some descriptions of primary reactions, subsequent processes leading up to the final formation mechanism remain unclear. This mechanism is also crucial for understanding the formation of other carbonaceous materials. In this work, we visualize C black formation by acetylene pyrolysis using molecular dynamics simulations with a molecular reactive force field named ReaxFF. We find that the formation undergoes four stages: (1) chain elongation by H abstraction and polymerization of small C species, (2) chain branching, (3) cyclization and ring densification, and (4) condensed ring folding. The simulated C black particle possesses a structure of folded graphite layers, which is in good accordance with experimental observations. Cyclization and condensation are derived from fusion between neighboring chains, significantly varying from common experimental observations at relatively low temperatures that abide by the mechanism of H abstraction and C2H2 addition. Moreover, polyyne and polyene are usually found during acetylene pyrolysis, suggesting that the pyrolysis of acetylene and other hydrocarbons may be a feasible method of obtaining carbyne, a novel carbonaceous material with a high value.

12.
Phys Chem Chem Phys ; 17(18): 12013-22, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25872486

RESUMEN

Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), ß-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

13.
ACS Appl Mater Interfaces ; 6(15): 12235-44, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25055727

RESUMEN

Functionalized graphene sheet (FGS) is a promising additive that enhances fuel/propellant combustion, and the determination of its mechanism has attracted much interest. In the present study, a series of molecular dynamic simulations based on a reactive force field (ReaxFF) are performed to explore the catalytic activity (CA) of FGS in the thermal decay of nitromethane (NM, CH3NO2). FGSs and pristine graphene sheets (GSs) are oxidized in hot NM liquid to increase their functionalities and subsequently show self-enhanced CAs during the decay. The CAs result from the interatomic exchanges between the functional groups on the sheets and the NM liquid, i.e., mainly between H and O atoms. CA is dependent on the density of NM, functionalities of sheets, and temperature. The GSs and FGSs that originally exhibit different functionalities tend to possess similar functionalities and consequently similar CAs as temperature increases. Other carbon materials and their oxides can accelerate combustion of other fuels/propellants similar to NM, provided that they can be dispersed and their key reaction steps in combustion are similar to NM.

14.
Phys Chem Chem Phys ; 13(25): 11951-7, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21625705

RESUMEN

Atomistic molecular dynamics simulations have are used to investigate the liquid crystal systems based on [4-pentyl-(1-cyclohexenyl)]-(4-cyanophenyl)diazene (5CPDCN) and 4-cyano-4'-pentylazobenzene (5AZCN). The results show the growth process of a nematic phase from a disordered phase. Then the phase transition caused by isomerization reaction is studied based on a temporary modification of the dihedral potential. The properties of 5AZCN and 5CPDCN are compared, showing that the orientation of trans-5CPDCN is more highly ordered than trans-5AZCN. This can be attributed to the more extended dihedral angles φ(2) (i.e. the dihedral angle between the ring system and the terminal chain) in trans-5CPDCN enhance the rod-like conformation of the molecules. The orientational correlation functions g(l)(r) (l = 1, 2) are also calculated, by which we find that both 5CPDCN and 5AZCN systems in nematic phase present parallel and anti-parallel dipole correlations. The anti-parallel dipole correlation is localized for the 5CPDCN system; on the contrary, the parallel dipole correlation is weakly localized for the 5AZCN system.

15.
J Mol Model ; 17(11): 3005-13, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21360177

RESUMEN

Coarse-grained molecular dynamics simulations were used to investigate the self-assembly of polymer-tethered nanorods with relatively high aspect ratio. The number and location of polymer tethers were varied to determine their influence on nanorod self-assembly. We found that laterally polymer-tethered nanorods self-assemble into structures with flat interfaces; these structures include stepped ribbons, stepped lamellae and lamellae with rods packed into bilayer sheets. The stepped lamellar phase is observed for the first time in this study. End polymer-tethered nanorods are prone to self-assemble into structures with curved interfaces, and the assembled structures observed here include spherical micelles and nematically aligned cylinders. The cylinder phase exists at high number densities, instead of the lamellar phase typically found for end polymer-tethered nanorods with relatively lower aspect ratio.


Asunto(s)
Nanotubos/química , Polímeros/química , Conformación Molecular , Simulación de Dinámica Molecular
16.
J Mol Model ; 17(4): 721-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20535622

RESUMEN

Atomistic molecular dynamics simulations have been used to investigate the adsorption of permethyldecasilane (MS10) on the silicon (001) surface. The condition under which the self-assembled monolayer forms is examined. The properties of the well-ordered structures, including the packing patterns, the equilibrium distances between two neighboring chains, and the tilt angles, are calculated to characterize the structure of the self-assembled monolayer. The results are comparable with those obtained experimentally.


Asunto(s)
Simulación de Dinámica Molecular , Silanos/química , Silicio/química , Adsorción , Conformación Molecular , Propiedades de Superficie
17.
J Mol Model ; 17(3): 515-26, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20508957

RESUMEN

G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3'-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.


Asunto(s)
G-Cuádruplex , Sitios de Unión , Simulación por Computador , Dimerización , Ligandos , Modelos Moleculares , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...