Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 256: 112574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677004

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 µM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.


Asunto(s)
Antineoplásicos , Autofagia , Complejos de Coordinación , Mitocondrias , Especies Reactivas de Oxígeno , Rutenio , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Autofagia/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Rutenio/química , Rutenio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Potencial de la Membrana Mitocondrial/efectos de los fármacos
2.
Angew Chem Int Ed Engl ; 62(48): e202312897, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830171

RESUMEN

Ferroptosis is a form of programmed cell death driven by iron-dependent lipid peroxidation (LPO) with the potential for antitumor immunity activation. In this study, a nonferrous cyclopentadienyl metal-based ferroptosis inducer [Ir(Cp*)(Bet)Cl]Cl (Ir-Bet) was developed by a metal-ligand synergistic enhancement (MLSE) strategy involving the reaction of [Ir(Cp*)Cl]2 Cl2 with the natural product Betulin. The fusion of Betulin with iridium cyclopentadienyl (Ir-Cp*) species as Ir-Bet not only tremendously enhanced the antiproliferative activity toward cancer cells, but also activated ferritinophagy for iron homeostasis regulation by PI3K/Akt/mTOR cascade inhibition with a lower dosage of Betulin, and then evoked an immune response by nuclear factor kappa-B (NF-κB) activation of Ir-Cp* species. Further immunogenic cell death (ICD) occurred by remarkable ferroptosis through glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) deactivation and ferritinophagy. An in vivo vaccination experiment demonstrated desirable antitumor and immunogenic effects of Ir-Bet by increasing the ratio of cytotoxic T cells (CTLs)/regulatory T cells (Tregs).


Asunto(s)
Ferroptosis , Iridio/farmacología , Fosfatidilinositol 3-Quinasas , Hierro/metabolismo , Glutatión
3.
Dalton Trans ; 52(20): 6922-6933, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37158602

RESUMEN

Breast cancer (BC) is one of the most common malignant tumors and often accompanied by inflammatory processes. Inflammation is an essential component of the tumor microenvironment, which might influence tumor proliferation and metastasis. Herein, three metal-arene complexes MA-bip-Ru, MA-bpy-Ir, and MA-bpy-Ru were prepared by tethering the non-steroidal anti-inflammatory drug meclofenamic acid (MA). Among them, MA-bip-Ru and MA-bpy-Ir showed lower cytotoxicity towards cancer cells, but MA-bpy-Ru showed significantly high selectivity and cytotoxicity towards MCF-7 cells through the autophagic pathway and exhibited no toxicity against normal HLF cells, showing potential for selective treatment of tumor cells. MA-bpy-Ru could also effectively destroy the 3D multicellular tumor spheroids, demonstrating its potential for clinical application. Besides, MA-bip-Ru, MA-bpy-Ir, and MA-bpy-Ru exhibited anti-inflammatory properties superior to MA, notably downregulating the expression of cyclooxygenase-2 (COX-2) and inhibiting the secretion of prostaglandin E2 in vitro. These findings demonstrated that MA-bpy-Ru was capable of intervening in inflammatory processes and showed the potential of MA-bpy-Ru to act as a selective anticancer agent, thus presenting a new mechanism of action for metal-arene complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Ciclooxigenasa 2 , Ácido Meclofenámico , Rutenio/farmacología , Humanos
4.
J Inorg Biochem ; 243: 112195, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36996696

RESUMEN

Combination of novel immunomodulation and traditional chemotherapy has become a new tendency in cancer treatment. Increasing evidence suggests that blocking the "don't eat me" signal transmitted by the CD47 can promote the phagocytic ability of macrophages to cancer cells, which might be promising for improved cancer chemoimmunotherapy. In this work, we conjugated CPI-alkyne modified by Devimistat (CPI-613) with ruthenium-arene azide precursor Ru-N3 by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to construct Ru complex CPI-Ru. CPI-Ru exhibited satisfactory cytotoxicity towards the K562 cells while nearly non-toxic towards the normal HLF cells. CPI-Ru has been demonstrated to cause severe damage to mitochondria and DNA, ultimately inducing cancer cell death through the autophagic pathway. Moreover, CPI-Ru could significantly downregulate the expression of CD47 on the surface of K562 accompanied by the enhanced immune response by targeting the blockade of CD47. This work provides a new strategy for utilizing metal-based anticancer agents to block CD47 signal to achieve chemoimmunotherapy in chronic myeloid leukemia treatment.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Rutenio , Humanos , Rutenio/farmacología , Antígeno CD47/genética , Antígeno CD47/metabolismo , Azidas , Inmunización , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Fagocitosis
5.
J Inorg Biochem ; 238: 112057, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370504

RESUMEN

It is a major challenge to design novel multifunctional metal-based chemotherapeutic agents for anti-tumor and anti-metastasis applications. Two complexes (OA-Ir and OA-Ru) were synthesized via CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction from nontoxic Ir-N3 or Ru-N3 species and low toxic alkynyl precursor OA-Alkyne, and exhibited satisfactory anti-tumor and anti-metastasis pharmacological effects. Conjugation of Oleanolic acid (OA) and metal-arene species significantly enhanced the cytotoxicity in A2780 cells compared to the precursors through mitochondrial-induced autophagy pathway. Moreover, the two complexes could inhibit the cell metastasis and invasion through damage of actin dynamics and down-regulation of MMP2/MMP9 proteins. Combination of two precursors improved the lipophilicity and biocompatibility, simultaneously enhanced the cell uptake and the mitochondrial accumulation of metal-arene complexes, which caused mitochondrial membrane potential damage, oxidative phosphorylation, ATP depletion and autophagy. Besides, OA-Ir and OA-Ru displayed excellent activity to disintegrate the 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work provides a new way for developing novel metal-based complexes via CuAAC reaction for simultaneously inhibiting tumor proliferation and metastasis.


Asunto(s)
Complejos de Coordinación , Neoplasias Ováricas , Rutenio , Humanos , Femenino , Rutenio/farmacología , Iridio/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Alquinos
6.
J Inorg Biochem ; 235: 111913, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35905643

RESUMEN

9-Anthracenecarboxylic acid (9-Ac) was reported early as a chloride channel inhibitor and was found to exhibit significant anti-proliferative activity on leukemic cells, but has not been researched in solid tumor cells. Herein, a 9-anthraceneic acid derivative was introduced into the cyclometalated Iridium (III) species to construct a novel Iridium (Ir) complex Ir-9-Ac, [Ir(ppy)2(9-Ac-L)]PF6 (ppy = 2-phenylpyridine, 9-Ac-L = N-((4'-methyl-[2,2'-bipyridin]-4-yl)methyl)anthracene-9-carboxamide), which could accumulated in lysosomes. Ir-9-Ac showed good cytotoxic activity against several tumor cell lines, notably on A549 cells. Besides Ir-9-Ac could inhibit the cell colony formation and growth of the 3D cell spheroids, demonstrating the potential to suppress tumors in vivo. This design provided a platform for the design of cyclometalated Iridium (III) anticancer complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Antracenos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Iridio/farmacología , Lisosomas/metabolismo
7.
Angew Chem Int Ed Engl ; 61(27): e202203843, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35384194

RESUMEN

Metabolic adaptations can help cancer cells to escape from chemotherapeutics, mainly involving autophagy and ATP production. Herein, we report a new rhein-based cyclometalated IrIII complex, Ir-Rhein, that can accurately target mitochondria and effectively inhibit metabolic adaptations. The complex Ir-Rhein induces severe mitochondrial damage and initiates mitophagy to reduce the number of mitochondria and subsequently inhibit both mitochondrial and glycolytic bioenergetics, which eventually leads to ATP starvation death. Moreover, Ir-Rhein can overcome cisplatin resistance. Co-incubation experiment, 3D tumor spheroids experiment and transcriptome analysis reveal that Ir-Rhein shows promising antiproliferation performance for cisplatin-resistant cancer cells with the regulation of platinum resistance-related transporters. To our knowledge, this is a new strategy to overcome metallodrug resistance with a mitochondria-relevant treatment.


Asunto(s)
Mitofagia , Neoplasias , Adenosina Trifosfato/metabolismo , Autofagia , Cisplatino/farmacología , Humanos , Mitocondrias/metabolismo , Mitofagia/fisiología , Neoplasias/patología
8.
Natl Sci Rev ; 8(9): nwaa286, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691728

RESUMEN

Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.

9.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34503331

RESUMEN

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Asunto(s)
Antineoplásicos/farmacología , Calixarenos/farmacología , Complejos de Coordinación/farmacología , Osmio/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Calixarenos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Daño del ADN , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Osmio/química , Procesos Fotoquímicos
10.
J Inorg Biochem ; 210: 111132, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32569884

RESUMEN

Polypyridyl ruthenium complexes as novel photosensitizers had drawn attention due to its high selectivity towards cancer cells and low toxicity to normal cells. Herein, we synthesized a lysosome-targeted polypyridyl ruthenium complex Rhein-Ru(bpy)3 (bpy = 2,2'-bipyridine, rhein = 4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid), tethering with the Chinese medicine herb rhein. Rhein-Ru(bpy)3 exhibited high phototoxicity with short time of irradiation against tumor cell lines with the IC50 value of 2.4- 8.7 µM, and higher cytotoxicity against cisplatin-resistant A2780 cell lines, suggesting that Rhein-Ru(bpy)3 could overcome the cisplatin resistance. Moreover, Rhein-Ru(bpy)3 displayed low cytotoxicity towards cell lines in dark incubation, which was beneficial to reduce the toxic side effects towards normal cell lines. Besides, the confocal imaging and western blotting assay results suggested that Rhein-Ru(bpy)3 could induce cancer cell death through the autophagy pathway. These results inspired us that lysosome-targeted photosensitizers based on ruthenium complexes showed great potential for photodynamic therapy (PDT) application in cancer treatment.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Lisosomas/metabolismo , Fármacos Fotosensibilizantes/farmacología , 2,2'-Dipiridil/efectos de la radiación , Antraquinonas/síntesis química , Antraquinonas/farmacología , Antraquinonas/efectos de la radiación , Antineoplásicos/síntesis química , Antineoplásicos/efectos de la radiación , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Luz , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/efectos de la radiación , Rutenio/química , Rutenio/efectos de la radiación , Oxígeno Singlete/metabolismo
11.
Biomater Sci ; 8(14): 3994-4002, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32573618

RESUMEN

Besides tumor hypoxia and limitation of superficial lesions, the short lifetime of photoinduced reactive oxygen species (ROS) is another factor repressing photodynamic therapy (PDT) efficacy. To overcome these problems, this study developed newly designed mitochondria-specific, H2O2-activatable, and O2-producing nanoparticles to achieve highly selective and efficient PDT and self-sufficiency of O2 in hypoxic tumors. The newly designed nanoparticles (BDPP NPs) are composed of a mitochondria-targeting photosensitizer and catalase in the aqueous core and a black hole quencher and fluorescent tracker in the polymeric shell, and modified with the tumor-targeting cyclic pentapeptide c(RGDfK). Once taken up by αvß3 integrin-rich tumor cells, intracellular H2O2 easily penetrated the lipophilic shells into the aqueous cores of BDPP NPs, and it was catalyzed by catalase to quickly generate O2 gas, causing the rupture of the NPs to release the photosensitizer. Therefore in vivo tumor cell mitochondria targeting by BDPP can be realized together with the favorable hypoxia relief. In vitro and in vivo experiments demonstrate that the therapeutic efficiency was significantly improved by the mitochondria-specific feature and H2O2-controllable generation of 1O2. More importantly, BDPP NPs continuously generate O2 in the PDT process, which can be helpful for resolving the overconsumption of oxygen in PDT and enhancing the PDT efficiency of cancer chemotherapy. We anticipate that this work may provide new insight into the design of smart PDT systems to achieve highly selective in vivo PDT via targeting subcellular organelles and realize oxygen therapy in O2-deprived tumors.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrógeno , Hipoxia , Mitocondrias , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico
12.
Analyst ; 145(12): 4233-4238, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32441284

RESUMEN

Real-time monitoring of hydrogen sulphide (H2S) level change is of crucial importance for the study of its complicated roles in physiology. Herein, we developed a FRET strategy for designing ratiometric fluorescent H2S sensors. A coumarin-derived merocyanine fluorophore was selected as the acceptor, and two green-light-emission fluorophores were introduced as donors. The sensing mechanism was based on tuning the FRET efficiency, and the free sensors exhibited strong near-infrared emission at 665 nm due to the FRET process. The nucleophilic addition of HS- to the imide carbon disrupts the large conjugation system of merocyanine, which induces a dramatic loss of its absorption; thus, the FRET process gets blocked, and the green emission is increased. In the aqueous solution, both the probes, NBD-CMC and Nap-CMC, showed ratiometric H2S sensing behaviour, fast response, and high selectivity and sensitivity. Moreover, probe NBD-CMC was successfully applied to monitor the fluctuation of exogenously and endogenously generated H2S in HepG-2 cells.


Asunto(s)
Cumarinas/química , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/análisis , Indoles/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Células Hep G2 , Humanos , Sulfuro de Hidrógeno/química , Límite de Detección , Microscopía Confocal , Microscopía Fluorescente
13.
RSC Adv ; 10(9): 5392-5398, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35498295

RESUMEN

Alpha lipoic acid (LA) is a natural compound and coenzyme with sufficient safety information for serving as a promising anticancer agent. To further clarify the mechanism of action (MoA), two Ir(iii) complexes with the functionalized α-lipoic acid (N∧N-LA, N∧N, 2,2-bipyridine derivative), namely Ir1 and Ir2, were synthesized, where Ir1 possessed a half-sandwich structure with the formula [Ir(Cp*)(N∧N-LA)Cl]PF6 (Cp* = 1,2,3,4,5-pentamethyl-cyclopentadiene) and Ir2 possessed the cyclometalated structure with the formula [Ir(C∧N)2(N∧N-LA)]PF6 (C∧N = 2-phenylpyridine). Even though both complexes were constructed based on the same N∧N-LA ligand, Ir1 showed no cytotoxicity (IC50 > 200 µM), which was due to its low lipophilicity for hard penetration into the cancer cells, easy hydrolysis, and reaction with GSH. Ir2 exhibited excellent cytotoxicity (IC50 = 3.43-6.74 µM) toward diverse cancer cell lines in vitro and a promising ability to overcome the cisplatin-resistance in A549R cells. The anticancer mechanism of Ir2 in A549 cells was investigated in detail, and it was found it could localize and accumulate in the lysosomes of A549 cells, induce ROS, arrest the cycle at G0/G1, and lead to cell death by autophagy. Comparison with Ir-NH2 ([Ir(C∧N)2(N∧N-NH2)]PF6) demonstrated that introduction of the LA ligand to Ir2 could highly enhance the cytotoxicity and help to overcome the cisplatin-resistance. This study of the half-sandwich and cyclometalated Ir(iii)-based anticancer agents highlighted the different MoAs toward cancer cells and provided new insights for understanding their structure-property relationships.

14.
Adv Sci (Weinh) ; 6(15): 1900341, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31406668

RESUMEN

Epilepsy is a chronic neurodegenerative disease, and accumulating evidence suggests its pathological progression is closely associated with peroxynitrite (ONOO-). However, understanding the function remains challenging due to a lack of in vivo imaging probes for ONOO- determination in epileptic brains. Here, the first near-infrared imaging probe (named ONP) is presented for tracking endogenous ONOO- in brains of kainate-induced epileptic seizures with high sensitivity and selectivity. Using this probe, the dynamic changes of endogenous ONOO- fluxes in epileptic brains are effectively monitored with excellent temporal and spatial resolution. In vivo visualization and in situ imaging of hippocampal regions clearly reveal that a higher concentration of ONOO- in the epileptic brains associates with severe neuronal damage and epileptogenesis; curcumin administration can eliminate excessively increased ONOO-, further effectively protecting neuronal cells. Moreover, by combining high-content analysis and ONP, a high-throughput screening method for antiepileptic inhibitors is constructed, which provides a rapid imaging/screening approach for understanding epilepsy pathology and accelerating antiseizure therapeutic discovery.

15.
Angew Chem Int Ed Engl ; 58(36): 12661-12666, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243832

RESUMEN

A photosensitizing monofunctional Pt complex, Pt-BDPA, was prepared with a BODIPY chromophore. Apart from its DNA binding ability, this complex displays emission at ca. 578 nm and a singlet oxygen quantum yield of 0.133. Confocal imaging revealed that this complex was sequestered in lysosomes via endocytosis in the dark, preventing its access to the nucleus. Profiting from its photoinduced ROS generation ability, this complex undergoes lysosomal escape to access the nucleus upon photoirradiation. The photoinduced ROS still cause a drop in intracellular GSH, favoring the stability of Pt-BDPA and contributing to its nuclear DNA accessibility. This complex displayed distinct cytotoxicity to all tested tumor cell lines upon photoirradiation, and the IC50 values were ca. 3-6 µm, which are distinctly lower than those found with only dark incubation (IC50 >50 µm). These results are consistent with photoactivated lysosomal escape of this photosensitizing Pt complex to access the nucleus.

16.
Inorg Chem ; 56(7): 3754-3762, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28080031

RESUMEN

Sensitizing the antitumor activity of monofunctional PtII complexes is a reliable approach to developing antitumor agents different from the classic Pt-based drugs. Considering the poor intracellular accumulation of monofunctional PtII complexes, in this study, the photosensitizing monofunctional PtII complex Pt-BA was derived from a weak BODIPY (boron-dipyrromethene)-derived photosensitizer BA, with the purpose to improve its antitumor cytotoxicity via enhancing its intracellular accumulation with a short time photo-irradiation. Photoinduced reactive oxygen species (ROS) determination indicated that the PtII center in Pt-BA is able to improve the photoinduced ROS production ability of BA, which makes Pt-BA a mild photosensitizer. Fluorescence imaging disclosed that dark incubation makes Pt-BA accumulate mainly on the surface of cell membrane, and the later short time photo-irradiation (5 min) promotes distinctly the intracellular accumulation of Pt-BA, which has been confirmed by inductively coupled plasma-mass spectrometry determination. Flow cytometric Annexin V-FITC assay indicated that the short time irradiation of Pt-BA induces in situ the cell membrane damage, which might finally enhance the intracellular accumulation of this monofunctional complex. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay confirmed that the short time photo-irradiation promotes distinctly the antitumor cytotoxicity of Pt-BA against MCF-7, SGC-7901, A549, and HeLa cell lines. The photopromoted antitumor activity of Pt-BA implies that modifying monofunctional PtII complex as a mild photosensitizer to promote its cell accumulation is a useful approach to sensitizing the antitumor activity of monofunctional PtII complex and renders the possibility of monofunctional PtII prodrugs for precise chemotherapy via only short time photoactivation.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Compuestos Organoplatinos/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Compuestos de Boro/efectos de la radiación , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Fluorescencia , Humanos , Luz , Microscopía Confocal , Microscopía Fluorescente , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/efectos de la radiación , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...