Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 6(13): 11572-11580, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469507

RESUMEN

Gold nanostructures have attracted broad attention. Among various nanostructures, gold nanobipyramids have shown great potential in sensing, biomedicine, environmental protection, chemical catalysis, and optics due to their unique physical and optical properties and ease of chemical functionalization. Compared with other plasmonic nanostructures, gold nanobipyramids possess narrow optical resonances, stronger plasmonic local field enhancement, and size- and shape-dependent surface plasmon resonance. However, the synthesis and purification of homogeneous gold nanobipyramids are very challenging. The gold nanobipyramids synthesized via the commonly used seed-mediated growth method have low yields and are often coproduced with spherical nanoparticles. In this study, we reported a temperature-derived purification method for the isolation of gold bipyramids. In the presence of salt, by altering the temperature of the solution, large gold bipyramids can be separated from small spherical nanoparticles. As a result, a yield of as high as 97% gold nanobipyramids can be achieved through a single round of purification, and correspondingly, the ratio between the longitudinal surface plasmon resonance (LSPR) and transverse SPR intensity significantly increases to as high as 6.7. The purified gold nanobipyramids can be used as a colorimetric probe in the detection of tannic acid with a detection limit of 0.86 µM and a linear detection range from 1.25 to 37.5 µM.

2.
J Mater Chem B ; 11(15): 3422-3433, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000531

RESUMEN

The intrinsic pathological characteristics of tumor microenvironments restrict the deep penetration of nanomedicines by passive diffusion. Magnetophoresis is a promising strategy to improve the tumor penetration of nanomedicines aided by the external magnetic propulsive force. However, the research thus far has been focused on large nanoparticles, while ultrasmall superparamagnetic iron oxide (Fe3O4) nanoparticles (<∼20 nm) exhibit better performance in many applications such as cancer diagnosis and treatment. Herein, we aim to determine and understand the penetration of ultrasmall Fe3O4 nanoparticles with various sizes, shapes, surface charges and magnetizations in a 3D tumor spheroid model. The behaviour of the nanoparticles of three sizes (10, 15 and 21 nm), two shapes (spherical and octahedral), and opposite surface charges (negative and positive) was investigated. The results demonstrate that magnetically directed penetration works effectively on ultrasmall Fe3O4 nanoparticles. In the absence of a magnetic field, the shape and the surface charge of the ultrasmall magnetic nanoparticles have a more pronounced effect on their penetration compared to their dimensions. While in the presence of a magnetic field, the advantage of larger magnetic nanoparticles was obvious because they experience higher magnetic driving force due to their higher magnetic moments. Overall, relatively large (21 nm), spherical, and positively charged ultrasmall Fe3O4 nanoparticles showed greater penetration in tumors under a magnetic field. Furthermore, our findings suggest that the penetration efficiency of Fe3O4 nanoparticles is closely related to their cellular internalization ability. Therefore, optimization of the cellular uptake and of the magnetization of magnetic nanoparticles should be considered simultaneously for maximizing their penetration in tumor tissue through magnetophoresis.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas del Metal , Línea Celular Tumoral , Difusión , Nanopartículas del Metal/química , Nanopartículas de Magnetita/química
3.
Nano Converg ; 9(1): 15, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366117

RESUMEN

In the last decade, carbon quantum dots (CQDs), as a novel class of carbon-based nanomaterials, have received increasing attention due to their distinct properties. CQDs are ultimately small nanoparticles with an average size below 10 nm, possessing high water solubility, alluring photoluminescence, photostability, excellent biocompatibility, low/none toxicity, environmental friendliness, and high sustainability, etc. In history, there are intermittent threats from viruses to humans, animals and plants worldwide, resulting in enormous crises and impacts on our life, environment, economy and society. Some recent studies have unveiled that certain types of CQDs exhibited high and potent antiviral activities against various viruses such as human coronavirus, arterivirus, norovirus and herpesvirus. Moreover, they have been successfully explored and developed for different virus detections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article exclusively overviews and discusses the recent progress of designing, synthesizing, modifying/functionalizing and developing CQDs towards effective virus detection as well as the inhibition and treatment of viral infection. Their mechanisms and applications against various pathogenic viruses are addressed. The latest outcomes for combating the coronavirus disease 2019 (COVID-19) utilizing CQDs are also highlighted. It can be envisaged that CQDs could further benefit the development of virus detectors and antiviral agents with added broad-spectrum activity and cost-effective production.

4.
J Environ Manage ; 274: 111184, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32791324

RESUMEN

Resource utilization of wastes through effective separation is a major challenge in the field of water and wastewater treatment. Photocatalytic degradation is a powerful water treatment technology but has no selectivity in degradation of various coexisting contaminants due to its strong oxidation. In this work, a complex film composed of CdS and carboxylmethyl starch (CdS/CMS) was designed and fabricated using in situ formation method. The morphology, composition, and optical property of this film were investigated in detail by various characterization methods. CdS was well distributed in the starch matrix, and the absorption wavelength of this film was still located in the visible light region. This starch-based complex film was used to remove various organic dyes [methylene blue (MB), crystal violet (CV), and rhodamine B (RhB)] from aqueous solutions by two consecutive processes of adsorption enrichment and photocatalysis degradation. 0.1 g of CdS/CMS film can remove approximately 86.72% of MB and 81.03% of CV in 120 min. CdS/CMS still exhibited evidently selective photocatalysis degradation of MB and CV in MB/RhB and CV/RhB binary systems, respectively, and had nearly no effect on RhB. The cationic groups on MB and CV can effectively interact with negatively carboxyl groups of CMS via electrostatic interactions, causing their good affinities; but the anionic groups on RhB had an electrostatic repulsion to the starch matrix. The considerably different affinities of various dyes to CMS triggered strong adsorption preferences and great selective degradation effectiveness. The selectivity of CdS/CMS could not be influenced by pH and some coexisting inorganic anions. Furthermore, this complex film did not require regeneration and could be reused directly with low removal capacity loss. Therefore, a new and simple strategy was provided to realize the effective separation and recovery of target contaminants in water by photocatalytic degradation technology.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Purificación del Agua , Adsorción , Colorantes , Almidón
5.
J Environ Sci (China) ; 81: 168-180, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30975319

RESUMEN

The applications of natural polymeric flocculants due to their green feature has been recently received much more attention. In this work, the combined usages of a cationic starch-based coagulant and polyaluminum chloride (PACl) were extensively evaluated for various addition sequences in the coagulation of both raw (surface water from the Jiuxiang River) and synthetic turbid water (two kaolin suspensions with different initial turbidities). Two typical cationic starch-based coagulants with different structures (St-G and St-E) were tried. In comparison to St-G, St-E and PACl used individually as well as St-G and St-E dosed after PACl, the combination of the starch-based coagulants fed before PACl showed higher turbidity removal efficiency, which featured not only less optimal doses of both inorganic and organic coagulants but also lower residual turbidity. On the basis of a detailed analysis of the particle size and its distribution in solution supernatants before and after coagulation by two starch-based coagulants and PACl, polymeric coagulants preferentially coagulate the small-sized colloids due to their distinct long-chain structures, but PACl preferentially coagulates the medium-sized ones. Thus, the medium-sized particles that were previously formed by the starch-based coagulants would be collectively and effectively removed by the subsequent addition of PACl. The addition sequence of the inorganic and organic coagulants in their combined usage is an important factor for improvement of the turbidity removal efficiency in practice.


Asunto(s)
Hidróxido de Aluminio/química , Contaminantes Químicos del Agua/química , Color , Floculación , Modelos Químicos , Eliminación de Residuos Líquidos/métodos
6.
J Agric Food Chem ; 67(14): 3900-3908, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30873833

RESUMEN

In this study, we investigated the effects of the different critical genes in the three modules on tyrosol production in Escherichia coli. Coexpression of the yahK and ARO10 genes increased the yield of tyrosol by 10% compared to that of the control. Tyrosol production by E. coli BFPT1 and E. coli BFPA1 was higher by 15.0% and 17.8% than that by the control, respectively, via coordinated expression of key genes from modules 2 and 3. The tyrosol yield of E. coli BFPE2 was 58.3% higher than that of the control (reaching 5.72 mM) when the expression levels of the key genes aroA and tyrA* from module 2 were balanced. The tyrosol yield of E. coli BFPG1 was increased by 52.6% (reaching 5.8 mM) compared to the control via coexpression of modules 1, 2, and 3. This work suggested that microbial production of tyrosol in E. coli has potential for industrial applications.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Alcohol Feniletílico/análogos & derivados , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Alcohol Feniletílico/metabolismo
7.
J Agric Food Chem ; 65(23): 4708-4714, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28530096

RESUMEN

Tyrosol is a phenolic compound found in olive oil and wines. The health benefits of tyrosol have attracted considerable attention. Because the tyrosol extraction from plants poses a major obstacle, biosynthesizing this compound using microbial hosts is of interest. In this study, the phenylpyruvate decarboxylase gene ARO10 and the aromatic amino acid aminotransferase gene ARO8 were introduced into Escherichia coli to generate two recombinant tyrosol producers. Deleting the prephenate dehydratase gene pheA and the phenylacetaldehyde dehydrogenase gene feaB improved the tyrosol production. Under the optimal fermentation conditions, a recombinant strain overexpressing ARO10 gene produced 4.15 mM tyrosol from 1% (w/v) glucose during a 48 h shake flask cultivation. Furthermore, when tyrosine was used as the substrate, the recombinant strain co-overexpressing ARO8 and ARO10 genes displayed a higher tyrosol yield, in which 8.71 mM tyrosol was produced from 10 mM tyrosine. This investigation suggests that microbial tyrosol production has application potential.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Alcohol Feniletílico/análogos & derivados , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Alcohol Feniletílico/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA