Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-484208

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo, in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-452809

RESUMEN

The global spread of SARS-CoV-2 led to the most challenging pandemic in this century, posing major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SASR-CoV-2 can provide insights into the virus pathogenesis, and facilitates the development of novel broad-spectrum host-directed therapeutics. Here, employing genome-scale CRISPR screens, we provide a comprehensive data-set of cellular factors that are exploited by WT-SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. These screens identified known and novel host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination and Heparan sulfate biogenesis. In addition, the host phosphatidylglycerol biosynthesis processes appeared to have major anti-viral functions. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant, providing a possible explanation for the increased infectivity of this variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential pro-viral gene for all variants inspected. We revealed that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals showed an elevated level of GATA6, indicating the important role GATA6 may be playing in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and consequently to inhibition of the viral infectivity. Overall, we show GATA6 represents a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-398578

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. Here, we use RNA-sequencing and ribosome profiling along SARS-CoV-2 infection and comprehensively define the mechanisms that are utilized by SARS-CoV-2 to shutoff cellular protein synthesis. We show SARS-CoV-2 infection leads to a global reduction in translation but that viral transcripts are not preferentially translated. Instead, we reveal that infection leads to accelerated degradation of cytosolic cellular mRNAs which facilitates viral takeover of the mRNA pool in infected cells. Moreover, we show that the translation of transcripts whose expression is induced in response to infection, including innate immune genes, is impaired, implying infection prevents newly transcribed cellular mRNAs from accessing the ribosomes. Overall, our results uncover the multipronged strategy employed by SARS-CoV-2 to commandeer the translation machinery and to suppress host defenses.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-324145

RESUMEN

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-082909

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic 1,2. In order to understand SARS-CoV-2 pathogenicity and antigenic potential, and to develop diagnostic and therapeutic tools, it is essential to portray the full repertoire of its expressed proteins. The SARS-CoV-2 coding capacity map is currently based on computational predictions and relies on homology to other coronaviruses. Since coronaviruses differ in their protein array, especially in the variety of accessory proteins, it is crucial to characterize the specific collection of SARS-CoV-2 proteins in an unbiased and open-ended manner. Utilizing a suite of ribosome profiling techniques 3-8, we present a high-resolution map of the SARS-CoV-2 coding regions, allowing us to accurately quantify the expression of canonical viral open reading frames (ORF)s and to identify 23 novel unannotated viral translated ORFs. These ORFs include upstream ORFs (uORFs) that are likely playing a regulatory role, several in-frame internal ORFs lying within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; rather, virus translation dominates host translation due to high levels of viral transcripts. Overall, our work reveals the full coding capacity of SARS-CoV-2 genome, providing a rich resource, which will form the basis of future functional studies and diagnostic efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...