Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400985

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

2.
Phys Chem Chem Phys ; 26(8): 6490-6511, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324335

RESUMEN

A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal-organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sorbent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experimentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.

3.
J Am Chem Soc ; 146(5): 3160-3170, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38276891

RESUMEN

High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.

4.
J Phys Chem Lett ; 13(44): 10471-10478, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36326596

RESUMEN

Densifying hydrogen in a metal-organic framework (MOF) at moderate pressures can circumvent challenges associated with high-pressure compression. The highly tunable structural and chemical composition in MOFs affords vast possibilities to optimize binding interactions. At the heart of this search are the nanoscale characteristics of molecular adsorption at the binding site(s). Using density functional theory (DFT) to model binding interactions of hydrogen to the exposed metal site of cation-exchanged MFU-4l, we predict multiple hydrogen ligation of H2 at the first coordination sphere of V(II) in V(II)-exchanged MFU-4l. We find that the strength of this binding between the metal site and H2 molecules can be tuned by altering the halide counterion adjacent to the metal site and that the fluoride containing node affords the most favorable interactions for high-density H2 storage. Using energy decomposition analysis, we delineate electronic contributions that enable multiple hydrogen ligation and demonstrate its benefits for hydrogen adsorption and release at modest pressures.


Asunto(s)
Estructuras Metalorgánicas , Compuestos Organometálicos , Hidrógeno/química , Vanadio , Compuestos Organometálicos/química , Adsorción
5.
Org Biomol Chem ; 15(25): 5268-5271, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28613322

RESUMEN

Nucleophilic alkynes bearing sulfonamide, trimethylsilyl, or p-methoxyphenyl groups at the sp carbon reacted with 3-ethoxycyclobutanones to give formal [4 + 2] cycloadducts by activation with TiCl4. Reactions with 2-monoalkyl and 2-nonsubstituted 3-ethoxycyclobutanones gave phenol derivatives directly by benzannulation, while the use of 2,2-dimethyl-3-ethoxycyclobutanone gave the corresponding dienones, which were converted to pentasubstituted phenols by dienone-phenol rearrangement. Regioselectivity that depended on the activation conditions of dienone-phenol rearrangement is also described.

6.
Org Lett ; 18(19): 4951-4953, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27648942

RESUMEN

α-Chloro- or α-bromo-γ-hydroxyenamides were synthesized by the reaction of an ynamide, titanium tetrahalide, and an aldehyde or a ketone. A γ-hydroxy trisubstituted enamide was prepared stereoselectively by Suzuki coupling of an obtained α-chloro-γ-hydroxyenamide with phenyl boronic acid. Intramolecular cyclization of α-chloro-γ-hydroxyenamide took place to provide a 2,3-dihydrobenzoisothiazole 1,1-dioxide derivative by palladium-catalyzed C-H activation of the tosyl group. Hydrochlorination of ynamides proceeded to give α-chloroenamides by treatment with titanium tetrachloride followed by addition of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...