Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Ecol ; 85(5): 1171-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27336221

RESUMEN

Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises.


Asunto(s)
Tamaño Corporal , Movimiento , Tortugas/fisiología , Animales , Ecuador , Femenino , Masculino , Motivación , Filogenia , Factores Sexuales , Factores de Tiempo
2.
J Anim Ecol ; 82(2): 310-21, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23171344

RESUMEN

Seasonal migration has evolved in many taxa as a response to predictable spatial and temporal variation in the environment. Individual traits, physiology and social state interact with environmental factors to increase the complexity of migratory systems. Despite a huge body of research, the ultimate causes of migration remain unclear. A relatively simple, tractable system - giant tortoises on Santa Cruz Island, Galapagos, was studied to elucidate the roles of environmental variation and individual traits in a partial migratory system. Specifically, we asked: (i) do Galapagos tortoises undergo long-distance seasonal migrations? (ii) is tortoise migration ultimately driven by gradients in forage quality or temperature; and (iii) how do sex and body size influence migration patterns? We recorded the daily locations of 17 GPS-tagged tortoises and walked a monthly survey along the altitudinal gradient to characterize the movements and distribution of tortoises of different sizes and sexes. Monthly temperature and rainfall data were obtained from weather stations deployed at various altitudes, and the Normalized Difference Vegetation Index was used as a proxy for forage quality. Analyses using net displacement or daily movement characteristics did not agree on assigning individuals as either migratory or non-migratory; however, both methods suggested that some individuals were migratory. Adult tortoises of both sexes move up and down an altitudinal gradient in response to changes in vegetation dynamics, not temperature. The largest tagged individuals all moved, whereas only some mid-sized individuals moved, and the smallest individuals never left lowland areas. The timing of movements varied with body size: large individuals moved upward (as lowland forage quality declined) earlier in the year than did mid-sized individuals, while the timing of downward movements was unrelated to body size and occurred as lowland vegetation productivity peaked. Giant tortoises are unlikely candidates for forage-driven migration as they are well buffered against environmental fluctuations by large body size and a slow metabolism. Notably the largest, and presumably most dominant, individuals were most likely to migrate. This characteristic and the lack of sex-based differences in movement behaviour distinguish Galapagos tortoise movement from previously described partial migratory systems.


Asunto(s)
Plantas , Tortugas/anatomía & histología , Tortugas/fisiología , Altitud , Migración Animal , Animales , Tamaño Corporal , Regulación de la Temperatura Corporal/fisiología , Demografía , Ecosistema , Conducta Alimentaria , Femenino , Masculino , Modelos Biológicos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA