Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860676

RESUMEN

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Asunto(s)
Monitoreo del Ambiente , Óxido de Etileno , Louisiana , Monitoreo del Ambiente/métodos , Humanos , Contaminantes Atmosféricos/análisis
2.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37874964

RESUMEN

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios , Humo/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Contaminación del Aire/análisis , Material Particulado/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos
3.
ACS Environ Au ; 3(2): 87-93, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102087

RESUMEN

Comparisons of observation-based emission estimates with emission inventories for oil and gas production operations have demonstrated that intermittency in emissions is an important factor to be accounted for in reconciling inventories with observations. Most emission inventories do not directly report data on durations of active emissions, and the variability in emissions over time must be inferred from other measurements or engineering calculations. This work examines a unique emission inventory, assembled for offshore oil and gas production platforms in federal waters of the Outer Continental Shelf (OCS) of the United States, which reports production-related sources on individual platforms, along with estimates of emission duration for individual sources. Platform specific emission rates, derived from the inventory, were compared to shipboard measurements made at 72 platforms. The reconciliation demonstrates that emission duration reporting, by source, can lead to predicted ranges in emissions that are much broader than those based on annual average emission rates. For platforms in federal waters, total emissions reported in the inventory for the matched platforms were within ∼10% of emissions estimated based on observations, depending on emission rates assumed for nondetects in the observational data set. The distributions of emissions were similar, with 75% of platform total emission rates falling between 0 and 49 kg/h for the observations and between 0.59 and 54 kg/h for the inventory.

4.
Sci Total Environ ; 838(Pt 2): 155861, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568171

RESUMEN

The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants. The goal of the SAFS campaign in May 2017 was to measure inorganic trace gases, VOCs, methane (CH4), and ethane (C2H6). The SAFS field design included two sites to better assess air quality across the metro area: an urban site (Traveler's World; TW) and a downwind/suburban site (University of Texas at San Antonio; UTSA). The results indicated that acetone (2.52 ± 1.17 and 2.39 ± 1.27 ppbv), acetaldehyde (1.45 ± 1.02 and 0.93 ± 0.45 ppbv) and isoprene (0.64 ± 0.49 and 1.21 ± 0.85 ppbv; TW and UTSA, respectively) were the VOCs with the highest concentrations. Additionally, positive matrix factorization showed three dominant factors of VOC emissions: biogenic, aged urban mixed source, and acetone. Methyl vinyl ketone and methacrolein (MVK + MACR) exhibited contributions from both secondary photooxidation of isoprene and direct emissions from traffic. The C2H6:CH4 demonstrated potential influence of oil and gas activities in San Antonio. Moreover, the high O3 days during the campaign were in the NOx-limited O3 formation regime and were preceded by evening peaks in select VOCs, NOx and CO. Overall, quantification of the concentration and trends of VOCs and trace gases in a major city in Texas offers vital information for general air quality management and supports strategies for reducing O3 pollution. The SAFS campaign VOC results will also add to the growing body of literature on urban sources and concentrations of VOCs in major urban areas.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Acetona , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Ozono/análisis , Texas , Compuestos Orgánicos Volátiles/análisis
5.
Environ Sci Technol ; 54(6): 3530-3538, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32149499

RESUMEN

Shipboard measurements of offshore oil and gas facilities were conducted in the Gulf of Mexico in February 2018. Species measured at 1 s include methane, ethane, carbon-13 (13C) and deuterium (D) isotopes of methane, and several combustion tracers. Significant variability in the emission composition is observed between individual sites, with typical ethane/methane ratios around 5.3% and 13C and D methane isotopic compositions around -40 and -240‰, respectively. Offshore plumes were spatially narrower than expectations of the plume width based on terrestrial atmospheric stability classes; a modified Gaussian dispersion methodology using empirically measured horizontal plume widths was used to estimate the emission rates. A total of 103 sites were studied, including shallow and deepwater offshore platforms and drillships. Methane emission rates range from 0 to 190 kg/h with 95% confidence limits estimated at a factor of 10. The observed distribution is skewed with the top two emitters accounting for 20% of the total methane emissions of all sampled sites. Despite the greater throughput of the deepwater facilities, they had moderate emission rates compared to shallow-water sites. Analysis of background ethane enhancements also suggests a source region in shallow waters. A complete 1 s measurement database is published for use in future studies of offshore dispersion.


Asunto(s)
Contaminantes Atmosféricos , Metano , Monitoreo del Ambiente , Etano , Golfo de México , Gas Natural
6.
Environ Sci Technol ; 53(9): 5483-5492, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912428

RESUMEN

Spatially resolved emission inventories were used with an atmospheric dispersion model to predict ambient concentrations of methane, ethane, and propane in the Eagle Ford oil and gas production region in south central Texas; predicted concentrations were compared to ground level observations. Using a base case inventory, predicted median propane/ethane concentration ratios were 106% higher (95% CI: 83% higher-226% higher) than observations, while median ethane/methane concentration ratios were 112% higher (95% CI: 17% higher-228% higher) than observations. Predicted median propane and ethane concentrations were factors of 6.9 (95% CI: 3-15.2) and 3.4 (95% CI: 1.4-9) larger than observations, respectively. Predicted median methane concentrations were 7% higher (95% CI: 39% lower-37% higher) than observations. These comparisons indicate that sources of emissions with high propane/ethane ratios (condensate tank flashing) were likely overestimated in the inventories. Because sources of propane and ethane emissions are also sources of methane emissions, the results also suggest that sources of emissions with low ethane/methane ratios (midstream sources) were underestimated. This analysis demonstrates the value of using multiple light alkanes in attributing sources of methane emissions and evaluating the performance of methane emission inventories for oil and natural gas production regions.


Asunto(s)
Contaminantes Atmosféricos , Alcanos , Etano , Metano , Gas Natural , Texas
7.
J Air Waste Manag Assoc ; 68(7): 671-684, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29513645

RESUMEN

Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. IMPLICATIONS: Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Industria del Petróleo y Gas , Alberta , Monitoreo del Ambiente , Etano/análisis , Propano/análisis , Saskatchewan , Dióxido de Silicio , Incertidumbre
8.
Phys Chem Chem Phys ; 18(1): 267-77, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26608709

RESUMEN

We report infrared multiple photon dissociation spectra of cryogenically-cooled (NaSO4(-))2(H2O)n dianions (n = 0-6, 8) in the spectral range of the sulfate stretching and bending modes (580-1750 cm(-1)). Characteristic absorption bands and structural trends are identified based on a comparison to harmonic spectra of minimum-energy structures. The bare quarternary complex (NaSO4(-))2 exhibits a C2h structure containing two fourfold-coordinated sodium cations in-between the two chelating sulfate dianions. Its stepwise solvation is driven by an interplay of SO4(2-)-H2O and Na(+)-H2O interactions. The first water binds in a tridentate intersulfate-bridging fashion. The second and third water molecules bind to the sulfate groups at either end of the complex, which is followed by the onset of water hydrogen-bond network formation. In contrast to the binary ion pair, NaSO4(-), no clear evidence for the disruption of the quaternary ion complex upon microhydration is found up to n = 8, underlining its remarkable stability and suggesting that the formation of quaternary ion complexes plays a central role in the initial stages of prenucleation in aqueous Na2SO4 solutions.

9.
Proc Natl Acad Sci U S A ; 112(51): 15597-602, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644584

RESUMEN

Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

11.
Environ Sci Technol ; 49(13): 7904-13, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148549

RESUMEN

We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Sedimentos Geológicos/química , Metano/análisis , Geografía , Texas , Instalaciones de Eliminación de Residuos
12.
Environ Sci Technol ; 49(13): 8124-31, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148550

RESUMEN

We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Sedimentos Geológicos/química , Metano/análisis , Geografía , Yacimiento de Petróleo y Gas , Texas
13.
Environ Sci Technol ; 49(13): 8147-57, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148553

RESUMEN

Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400-82,400) kg CH4 h(-1). O&G emissions were estimated to be 46,200 (40,000-54,100) kg CH4 h(-1) with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory's higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sedimentos Geológicos/química , Metano/análisis , Efecto Invernadero , Texas , Estados Unidos , United States Environmental Protection Agency
14.
Environ Sci Technol ; 49(13): 8158-66, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148554

RESUMEN

We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.


Asunto(s)
Contaminantes Atmosféricos/análisis , Etano/análisis , Sedimentos Geológicos/química , Metano/análisis , Simulación por Computador , Combustibles Fósiles , Texas
15.
Phys Chem Chem Phys ; 17(39): 25714-24, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26105043

RESUMEN

We report infrared multiple photon dissociation (IRMPD) spectra of cryogenically-cooled H2PO4(-)(H2O)n anions (n = 2-12) in the spectral range of the stretching and bending modes of the solute anion (600-1800 cm(-1)). The spectra cannot be fully understood using the standard technique of comparison to harmonic spectra of minimum-energy structures; a satisfactory assignment requires considering anharmonic effects as well as entropy-driven hydrogen bond network fluctuations. Aided by finite temperature ab initio molecular dynamics simulations, the observed changes in the position, width and intensity of the IRMPD bands with cluster size are related to the sequence of microsolvation. Due to stronger hydrogen bonding to the two terminal P[double bond, length as m-dash]O groups, these are hydrated before the two P-OH groups. By n = 6, all four end groups are involved in the hydrogen bond network and by n = 12, the cluster spectra show similarities to the condensed phase spectrum of H2PO4(-)(aq). Our results reveal some of the microscopic details concerning the formation of the aqueous solvation environment around H2PO4(-), provide ample testing grounds for the design of model solvation potentials for this biologically relevant anion, and support a new paradigm for the interpretation of IRMPD spectra of microhydrated ions.

16.
Environ Sci Technol ; 49(13): 7889-95, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25751617

RESUMEN

Results of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude. The distribution of emitters is peaked in the 0-5 kg/h range, with a significant tail. The ethane/methane molar enhancement ratio for this same distribution is investigated, showing a peak at ∼1.5% and a broad distribution between ∼4% and ∼17%. The regional distributions of source emissions and ethane/methane enhancement ratios are examined: the largest methane emissions appear between Fort Worth and Dallas, while the highest ethane/methane enhancement ratios occur for plumes observed in the northwestern potion of the region. Individual facilities, focusing on large emitters, are further analyzed by constraining the source location.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sedimentos Geológicos/química , Laboratorios , Metano/análisis , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Etano/análisis , Geografía , Texas
17.
Environ Sci Technol ; 49(5): 3252-61, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25668051

RESUMEN

Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T&S) sector of the US natural gas system were measured, including 25 sites required to report under the EPA greenhouse gas reporting program (GHGRP). Direct measurements of fugitive and vented sources were combined with AP-42-based exhaust emission factors (for operating reciprocating engines and turbines) to produce a study onsite estimate. Site-level methane emissions were also concurrently measured with downwind-tracer-flux techniques. At most sites, these two independent estimates agreed within experimental uncertainty. Site-level methane emissions varied from 2-880 SCFM. Compressor vents, leaky isolation valves, reciprocating engine exhaust, and equipment leaks were major sources, and substantial emissions were observed at both operating and standby compressor stations. The site-level methane emission rates were highly skewed; the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions. Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of their influence requires knowledge of the magnitude and frequency of superemitters across the entire T&S sector. Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and exhaust methane, and various exclusions. The bias is even larger if one accounts for the superemitters, which were not captured by the onsite measurements. The magnitude of the bias varied from site to site by site type and operating state. Therefore, while the GHGRP is a valuable new source of emissions information, care must be taken when incorporating these data into emission inventories. The value of the GHGRP can be increased by requiring more direct measurements of emissions (as opposed to using counts and emission factors), eliminating exclusions such as rod-packing vents on pressurized reciprocating compressors in standby mode under Subpart-W, and using more appropriate emission factors for exhaust methane from reciprocating engines under Subpart-C.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Industria Procesadora y de Extracción/instrumentación , Metano/análisis , Gas Natural/análisis , United States Environmental Protection Agency/normas , Contaminantes Atmosféricos/normas , Monitoreo del Ambiente/legislación & jurisprudencia , Monitoreo del Ambiente/normas , Industria Procesadora y de Extracción/normas , Estados Unidos
18.
Environ Sci Technol ; 49(5): 3219-27, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25668106

RESUMEN

Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Industria Procesadora y de Extracción/estadística & datos numéricos , Metano/análisis , Gas Natural , Estados Unidos
19.
Environ Health Insights ; 9(Suppl 4): 7-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26819556

RESUMEN

The Aerodyne Mobile Laboratory was deployed to the Houston Ship Channel and surrounding areas during the Benzene and Other Toxics Exposure field study in February 2015. We evaluated atmospheric concentrations of volatile organic hydrocarbons and other hazardous air pollutants of importance to human health, including benzene, 1,3-butadiene, toluene, xylenes, ethylbenzenes, styrene, and NO2. Ambient concentration measurements were focused on the neighborhoods of Manchester, Harrisburg, and Galena Park. The most likely measured concentration of 1,3-butadiene in the Manchester neighborhood (0.17 ppb) exceeds the Environmental Protection Agency's E-5 lifetime cancer risk level of 0.14 ppb. In all the three neighborhoods, the measured benzene concentration falls below or within the E-5 lifetime cancer risk levels of 0.4-1.4 ppb for benzene. Pollution maps as a function of wind direction show the impact of nearby sources.

20.
Environ Sci Technol ; 48(14): 8028-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24945706

RESUMEN

Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.


Asunto(s)
Contaminantes Atmosféricos/análisis , Etano/análisis , Metano/análisis , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Aeronaves , Simulación por Computador , Sedimentos Geológicos/química , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...