Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 203: 108019, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714026

RESUMEN

Seeds have enormous economic importance as source of calories, nutrition, edible oil, and biofuels. Therefore, seed traits like seed size and shape, weight, micronutrient content, oil content, quality, post-harvest sprouting, etc., are some of the main targets in crop improvement. Designing the strategies for their improvement benefits heavily from understanding the regulatory aspects of seed development. Recent studies indicate that long non-coding RNAs (lncRNAs) are one of the important regulators of seed development. They played a significant role in crop domestication by influencing seed traits. LncRNAs are conventionally defined as non-coding RNAs greater than 200 bp in length but lacking protein coding potential. Here we highlight the emerging pieces of evidence of lncRNA-mediated regulation of seed development through diverse mechanisms, for instance, by acting as target mimics or precursors of regulatory small RNAs or through chromatin remodeling and post-transcriptional repression. We also enumerate the insights from high-throughput transcriptomic studies from developing seeds of cereal, oilseed, biofuel, and pulse crops. We highlight the lncRNA candidates and lncRNA-mediated regulatory networks regulating seed development and related agronomic traits. Further, we discuss the potential of lncRNAs for improvement of agriculturally important seed traits through marker-assisted breeding and/or transgenic approaches.

2.
Front Plant Sci ; 13: 954467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330257

RESUMEN

Malaxis acuminata D. Don [=Crepidium acuminatum (D. Don) Szlach.] is an endangered medicinal orchid of the Ashtvarga group of plants in Ayurveda (Indian system of traditional medicine). Using a combination of aromatic cytokinin [meta-Topolin (mT)], plant biostimulant (chitosan), auxin [indole-3-butyric acid (IBA)], and a phenolic elicitor [phloroglucinol (PG)], plants of M. acuminata were regenerated in vitro for mass multiplication. The present research reveals the first-ever transcriptome of M. acuminata. A total of 43,111 transcripts encoding 23,951 unigenes were assembled de novo from a total of 815.02 million reads obtained from leaf and pseudobulb of in vitro raised M. acuminata. Expression analysis of genes associated with ß-sitosterol and eugenol biosynthesis in leaf and pseudobulb provided vital clues for differential accumulation of metabolites in M. acuminata. Ultra-performance liquid chromatography (UPLC) confirmed higher amounts of ß-sitosterol and eugenol content in the leaf as compared to the pseudobulb. Differential expression of transcripts related to starch and sucrose metabolism, plant hormone signal transduction, diterpenoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid, and gingerol biosynthesis suggested the operation of differential metabolic pathways in leaf and pseudobulb. The present research provides valuable information on the biosynthesis of secondary metabolites in M. acuminata, which could be used for advanced metabolite bioprospection using cell suspension culture and bioreactor-based approaches. Data also suggested that leaf tissues rather than pseudobulb can be used as an alternate source of bioactive metabolites thereby shifting the need for harvesting the pseudobulb. This will further facilitate the conservation and sustainable utilization of this highly valued medicinal orchid.

3.
Sci Rep ; 12(1): 11713, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810218

RESUMEN

Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.


Asunto(s)
Planta de la Mostaza , Semillas , Ciclo Celular/genética , División Celular , Perfilación de la Expresión Génica , Planta de la Mostaza/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...