Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Biotechnol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703305

RESUMEN

In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.

2.
Physiol Plant ; 176(2): e14260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511471

RESUMEN

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Asunto(s)
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferasas/genética , Vías Biosintéticas , Triterpenos/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Damaranos , Uridina Difosfato , Extractos Vegetales/química
3.
Cancers (Basel) ; 16(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339390

RESUMEN

Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.

4.
Ecotoxicol Environ Saf ; 269: 115783, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061081

RESUMEN

Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (AsV) with Pi, the association with S. indica promotes plant growth under arsenic (As) stress by reducing As bioavailability through adsorption, accumulation, and precipitation within the fungus. However, the capacity of S. indica to enhance Pi accumulation and utilization under As stress remains unexplored. Axenic studies revealed that As supply significantly reduces intracellular ACPase activity in S. indica, while extracellular ACPase remains unaffected. Further investigations using Native PAGE and gene expression studies confirmed that intracellular ACPase (isoform2) is sensitive to As, whereas extracellular ACPase (isoform1) is As-insensitive. Biochemical analysis showed that ACPase (isoform1) has a Km of 0.5977 µM and Vmax of 0.1945 Unit/min. In hydroponically cultured tomato seedlings, simultaneous inoculation of S. indica with As on the 14thday after seed germination led to hyper-colonization, increased root/shoot length, biomass, and induction of ACPase expression and secretion under As stress. Arsenic-treated S. indica colonized groups (13.33 µM As+Si and 26.67 µM As+Si) exhibited 8.28-19.14 and 1.71-3.45-fold activation of ACPase in both rhizospheric media and root samples, respectively, thereby enhancing Pi availability in the surrounding medium under As stress. Moreover, S. indica (13.33 µM As+Si and 26.67 µM As+Si) significantly improved Pi accumulation in roots by 7.26 and 9.46 times and in shoots by 4.36 and 8.85 times compared to the control. Additionally, S. indica induced the expression of SiPT under As stress, further improving Pi mobilization. Notably, fungal colonization also restricted As mobilization from the hydroponic medium to the shoot, with a higher amount of As (191.01 ppm As in the 26.67 µM As+Si group) accumulating in the plant's roots. The study demonstrates the performance of S. indica under As stress in enhancing Pi mobilization while limiting As uptake in the host plant. These findings provide the first evidence of the As-Pi interaction in the AM-like fungus S. indica, indicating reduced As uptake and regulation of PHO genes (ACPase and SiPT genes) to increase Pi acquisition. These data also lay the foundation for the rational use of S. indica in agricultural practices.


Asunto(s)
Fosfatasa Ácida , Arsénico , Basidiomycota , Micorrizas , Arsénico/toxicidad , Arsénico/metabolismo , Basidiomycota/metabolismo , Micorrizas/fisiología , Fosfatos/farmacología , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/farmacología
5.
Toxicol Ind Health ; 40(1-2): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37876040

RESUMEN

Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.


Asunto(s)
Tinturas para el Cabello , Femenino , Masculino , Animales , Humanos , Tinturas para el Cabello/toxicidad , Tinturas para el Cabello/metabolismo , Sulfatos/toxicidad , Staphylococcus aureus , Piel , Cabello , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo , Mamíferos
6.
Biomater Adv ; 157: 213729, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101068

RESUMEN

Bioactive glasses have recently been attracted to meet the challenge in bone tissue regeneration, repair, healing, dental implants, etc. Among the conventional bio-glasses, a novel quaternary mesoporous nano bio-glass with composition 81S(81SiO2-(16-x)CaO-2P2O5-1Na2O-xMgO) (x = 0, 1.6, 2.4, 4 and 8 mol%) employing Stober's method has been explored for examining the above potential application through in-vitro SBF assay, MTT assay, antimicrobial activity and drug loading and release ability. With increasing the MgO concentration up to 4 mol%, from in-vitro SBF assay, we observe that HAp layer develops on the surface of the nBGs confirmed from XRD, FTIR and FESEM. MTT assay using MG-63 cells confirms the biocompatibility of the nBGs having cell viability >225 % for MGO_4 after 72 h which is more than the clinically used 45S5 bio-glass. We have observed cell viability of >125 % even after 168 h. Moreover, MGO_4 is found to restrict the growth of E. coli by 65 % while S. aureus by 75 %, confirming the antimicrobial activity. Despite an increase in the concentration of magnesium, nBGs are found to be non-toxic towards the RBCs up to 4 mol% of MgO while for 8 %, the hemolysis percentage is >6 % which is toxic. Being confirmed MGO_4 nBG as a bioactive material, various concentrations of drug (Dexamethasone (DEX)) loading and release kinetics are examined. We show that 80 % of loading in case of 10 mg-ml-1 and 70 % of cumulative release in 100 h. The mesoporous structure of MGO_4 having an average pore diameter of 5 nm and surface area of 216 m2 g-1 confirmed from BET supports the loading and release kinetics. We conclude that the quaternary MGO_4 nBG may be employed effectively for bone tissue regeneration due to its high biocompatibility, excellent in-vitro cell viability, antimicrobial response and protracted drug release.


Asunto(s)
Antiinfecciosos , Óxido de Magnesio , Óxido de Magnesio/farmacología , Óxido de Magnesio/química , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Vidrio/química
7.
J Biol Chem ; 300(2): 105611, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159848

RESUMEN

During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Agrobacterium tumefaciens/clasificación , Agrobacterium tumefaciens/enzimología , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular , Peptidoglicano , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Secuencia Conservada/genética , Eliminación de Gen
8.
Cureus ; 15(9): e45443, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37859923

RESUMEN

Electric injuries (in the form of lightning or electric shock) may lead to various implications in the human body, the most important of which include neurological insults. The damage caused is influenced by the route of its entry into the body, its strength, and the duration of exposure. The muscles of the larynx receive motor supply from the recurrent laryngeal nerve (RLN) (except cricothyroid, which gets innervation from the external laryngeal nerve). Recurrent laryngeal nerve (RLN) palsy leading to vocal cord palsy is seen in several pathologies, but after thorough research of existing literature, we could only find a single case of vocal cord palsy following electric injuries, which was also lost in follow-up. In this report, we present a case of unilateral vocal cord palsy following an electric injury on the ipsilateral arm of a young male. He presented to the emergency department of our center soon after the accident. A multidisciplinary team was engaged in the overall management of the patient (in view of pleural effusion, acute kidney injury, and burn injury). He was started on steroids, speech therapy, and other supportive management. On follow-up, his condition improved, and laryngeal endoscopy showed positive signs. This case highlights a unique but rare possibility of vocal cord palsy following electric injuries and may help in the prompt diagnosis and management of the same.

9.
Biomedicines ; 11(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37893013

RESUMEN

The development of multidrug resistance (MDR) against chemotherapeutic agents has become a major impediment in cancer therapy. Understanding the underlying mechanism behind MDR can guide future treatment for cancer with better therapeutic outcomes. Recent studies evidenced that crossroads interaction between the heat shock proteins (HSP) and inflammatory responses under the tumor microenvironment plays a pivotal role in modulating drug responsiveness and drug resistance through a complex cytological process. This review aims to investigate the interrelationship between inflammation and HSP in acquiring multiple drug resistance and investigate strategies to overcome the drug resistance to improve the efficacy of cancer treatment. HSP plays a dual regulatory effect as an immunosuppressive and immunostimulatory agent, involving the simultaneous blockade of multiple signaling pathways in acquiring MDR. For example, HSP27 shows biological effects on monocytes by causing IL10 and TNFα secretion and blocking monocyte differentiation to normal dendritic cells and tumor-associated macrophages to promote cancer progression and chemoresistance. Thus, the HSP function and immune-checkpoint release modalities provide a therapeutic target for a therapeutically beneficial approach for enhancing anti-tumor immune responses. The interconnection between inflammation and HSP, along with the tumor microenvironment in acquiring drug resistance, has become crucial for rationalizing the effect of HSP immunomodulatory activity with immune checkpoint blockade. This relationship can overcome drug resistance and assist in the development of novel combinatorial cancer immunotherapy in fighting cancer with decreasing mortality rates.

10.
Nanotechnology ; 34(42)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37402363

RESUMEN

CoMn2O4, known for its extensive range of applications, has been subject to limited investigations regarding its structure dependent magnetic properties. Here, we have examined the structure dependent magnetic properties of CoMn2O4nanoparticles synthesized through a facile coprecipitation technique and are characterized using x-ray diffractometer, x-ray photoelectron spectroscopy (XPS), RAMAN spectroscopy, transmission electron microscopy and magnetic measurements. Rietveld refinement of the x-ray diffraction pattern reveals the coexistence of 91.84% of tetragonal and 8.16% of cubic phase. The cation distribution for tetragonal and cubic phases are (Co0.94Mn0.06)[Co0.06Mn1.94]O4and (Co0.04Mn0.96)[Co0.96Mn1.04]O4, respectively. While Raman spectra and selected area electron diffraction pattern confirm the spinel structure, both +2 and +3 oxidation states for Co and Mn confirmed by XPS further corroborate the cation distribution. Magnetic measurement shows two magnetic transitions, Tc1at 165 K and Tc2at 93 K corresponding to paramagnetic to a lower magnetically ordered ferrimagnetic state followed by a higher magnetically ordered ferrimagnetic state, respectively. While Tc1is attributed to the cubic phase having inverse spinel structure, Tc2corresponds to the tetragonal phase with normal spinel. In contrast to general temperature dependentHCobserved in ferrimagnetic material, an unusual temperature dependentHCwith high spontaneous exchange bias of 2.971 kOe and conventional exchange bias of 3.316 kOe at 50 K are observed. Interestingly, a high vertical magnetization shift (VMS) of 2.5 emu g-1is observed at 5 K, attributed to the Yafet-Kittel spin structure of Mn3+in the octahedral site. Such unusual results are discussed on the basis of competition between the non-collinear triangular spin canting configuration of Mn3+cations of octahedral sites and collinear spins of tetrahedral site. The observed VMS has the potential to revolutionize the future of ultrahigh density magnetic recording technology.

11.
Chem Biol Interact ; 379: 110508, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150498

RESUMEN

Tattooing is a very common fashion trend across all the ages and gender of the society worldwide. Although skin inflammatory diseases are very frequent among tattoo users because of the active chemical ingredients used in tattoo ink, yet no ingredient-specific toxicity study has been performed. Benzo(ghi)perylene (BgP) is one of the PAHs and an important ingredient of black tattoo ink that shows strong absorption in UVA and UVB radiation of sunlight. Therefore, understanding the hazardous potential of BgP especially under UVA exposure is important for the safety of skin of tattoo users by considering the fact that penetration of UVA is in the dermis region where tattoo ingredients reside. To evaluate the hazardous potential of BgP on human skin under UVA exposure, different experimental tools i.e., in-chemico, in-silico and in-vitro were utilized. Our results illustrated that BgP photosensitized under UVA (1.5 mW/cm2) irradiation shows a degradation pattern till 4 h exposure. Photosensitized BgP reduced significant cell viability (%) at 1 µg/ml concentration. However, the pretreatment of singlet and hydroxyl radical quenchers, restoration of cell viability observed, confirmed the role of type-I and type-II photodynamic reactions in phototoxicity of BgP. Further, intracellular uptake of BgP in HaCaT cells was estimated and confirmed by UHPLC analysis. Molecular docking of BgP with DNA and formation of γ-H2AX foci demonstrated the DNA intercalation and double-stranded DNA damaging potential of BgP. Furthermore, acridine orange and ethidium bromide (AO/EB) dual staining showed apoptotic cell death via photosensitized BgP under UVA irradiation. The above findings suggest that BgP reached the human skin cell and induced dermal toxicity via direct and indirect mode of DNA damage under UVA exposure finally promoting the skin cell death. Thus, BgP-containing tattoo ink may be hazardous and may induce skin damage and diseases, especially in presence of UVA radiation of sunlight. To minimize the risk of skin diseases from synthetic ingredients in tattoo ink, the study highlights the importance of developing eco-friendly and skin-friendly tattoo ingredients by companies.


Asunto(s)
Tatuaje , Humanos , Tatuaje/efectos adversos , Simulación del Acoplamiento Molecular , Rayos Ultravioleta/efectos adversos , Piel/metabolismo , Daño del ADN , ADN/metabolismo
12.
Food Chem ; 418: 135965, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37018903

RESUMEN

Bioelectrodes with low carbon footprint can provide an innovative solution to the surmounting levels of e-waste. Biodegradable polymers offer green and sustainable alternatives to synthetic materials. Here, a chitosan-carbon nanofiber (CNF) based membrane has been developed and functionalized for electrochemical sensing application. The surface characterization of the membrane revealed crystalline structure with uniform particle distribution, and surface area of 25.52 m2/g and pore volume of 0.0233 cm3/g. The membrane was functionalized to develop a bioelectrode for the detection of exogenous oxytocin in milk. Electrochemical impedance spectroscopy was employed to determine oxytocin in a linear concentration range of 10 to 105 ng/mL. The developed bioelectrode showed an LOD of 24.98 ± 11.37 pg/mL and sensitivity of 2.77 × 10-10 Ω / log ng mL-1/mm2 for oxytocin in milk samples with 90.85-113.34 percent recovery. The chitosan-CNF membrane is ecologically safe and opens new avenues for environment-friendly disposable materials for sensing applications.


Asunto(s)
Técnicas Biosensibles , Quitosano , Nanofibras , Carbono/química , Quitosano/química , Oxitocina/química , Electrodos , Técnicas Biosensibles/métodos
13.
ACS Omega ; 8(12): 11065-11075, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008120

RESUMEN

The presence of antibiotics in the aqueous environment has been a serious concern primarily due to the development of antimicrobial resistance (AMR) in diverse microbial populations. To overcome the rising AMR concerns, antibiotic decontamination of the environmental matrices may play a vital role. The present study investigates the use of zinc-activated ginger-waste derived biochar for the removal of six antibiotics belonging to three different classes, viz., ß-lactams, fluoroquinolones, and tetracyclines from the water matrix. The adsorption capacities of activated ginger biochar (AGB) for the concurrent removal of the tested antibiotics were investigated at different contact times, temperatures, pH values, and initial concentrations of the adsorbate and adsorbent doses. AGB demonstrated high adsorption capacities of 5.00, 17.42, 9.66, 9.24, 7.15, and 5.40 mg/g for amoxicillin, oxacillin, ciprofloxacin, enrofloxacin, chlortetracycline, and doxycycline, respectively. Further, among the employed isotherm models, the Langmuir model fitted well for all the antibiotics except oxacillin. The kinetic data of the adsorption experiments followed the pseudo-second order kinetics suggesting chemisorption as the preferred adsorption mechanism. Adsorption studies at different temperatures were conducted to obtain the thermodynamic characteristics suggesting a spontaneous exothermic adsorption phenomenon. AGB being a waste-derived cost-effective material shows promising antibiotic decontamination from the water environment.

14.
BioTech (Basel) ; 11(4)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36278560

RESUMEN

Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant-water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.

15.
Appl Environ Microbiol ; 88(12): e0033322, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638841

RESUMEN

The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased ß-lactamase production, a response dependent on the broad-spectrum ß-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent ß-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent ß-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in ß-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit ß-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.


Asunto(s)
Agrobacterium tumefaciens , Resistencia betalactámica , Agrobacterium tumefaciens/fisiología , Ampicilina/farmacología , Antibacterianos/farmacología , Glicosiltransferasas , Plantas Modificadas Genéticamente/genética , Resistencia betalactámica/genética , beta-Lactamasas/genética
16.
Chemosphere ; 300: 134504, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35398073

RESUMEN

Azo dyes are used at larger-scale as coloring agent in the textile industry. It generates a huge amount of dye containing wastewater and its toxicity threatens all kinds of life and also impacts human beings. At present, more impetus is being given to the biological treatment of dye effluent because of its azoreductase enzyme action to break down azo bond which leads to decolorization and degradation of dye. Bacterial consortium of E. asburiae and E. cloacae (1:1 ratio) was used for degradation and decolorization of Reactive Yellow-145 (RY-145) dye. The optimization of dye concentration, temperature, pH, and media has been carried out to determine the conditions required for maximum degradation and decolorization. The mixed consortium (10%) has shown 98.78% decolorization of RY-145 dye under static condition at 500 mgL-1 concentration, 35 °C and pH 7.0 at 12 h contact period. FTIR analysis showed formation of new functional groups in the treated dye, such as O-H stretch at 1361 cm-1, C-H stretch at 890 cm-1, N-H stretch at 1598 cm-1 and aromatic C-H at 671 cm-1 revealing degradation of dye. Biodegraded metabolites of RY-145 dye were identified through GC-MS analysis that includes 2-Cyclohexen-1-ol, 5-Nitroso-2, 4, 6-triaminopyrimidine, Octahydroquinoline-9-hydroxyperoxide, Tetramethyl-2-hexadecen-1-ol, 9-Octadecanoic acid, methyl ester and Hexadecanoic acid, methyl ester, respectively which have industrial applications. Cyclohexane was used in gasoline and adhesive while Octahydroquinoline-9-hydroxyperoxide and 5-Nitroso-2, 4, 6-triaminopyrimidine were used in manufacturing drugs. Tetramethyl-2-hexadecen-1-ol, 9-Octadecanoic acid, methyl ester and Hexadecanoic acid, methyl ester are antimicrobial and antioxidant. Phytotoxicity test also showed non-toxic effects of treated dye on germination of Cicer arietinum and Vigna radiata seeds. Similarly, genotoxicity study indicated less toxic effects of biodegraded dye products on Mitotic index (MI) and cell division of Allium cepa.


Asunto(s)
Compuestos Azo , Ácido Palmítico , Compuestos Azo/química , Bacterias/metabolismo , Biodegradación Ambiental , Colorantes/química , Ésteres/metabolismo , Humanos
17.
Plant J ; 109(1): 241-260, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748255

RESUMEN

Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Lantano/farmacología , Estrés Oxidativo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Canales Aniónicos Dependientes del Voltaje/genética
18.
Front Genet ; 12: 670929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163526

RESUMEN

Phenotypic characterization of postharvest traits is essential for the breeding of high-quality fruits. To compare postharvest traits of different genetic lines, it is essential to use a reference point during fruit development that will be common to all the lines. In this study, we employed a non-destructive parameter of chlorophyll levels to establish a similar physiological age and compared several postharvest traits of ten astringent and seven non-astringent persimmon cultivars. The fruit's traits examined were astringency, weight, total soluble solids (TSS), titratable acidity (TA), chlorophyll levels (I AD ), color (hue), firmness, color development and firmness loss during storage, crack development, and susceptibility to Alternaria infection. Although the chlorophyll (I AD ) index and color (hue) showed a high correlation among mature fruits of all cultivars, the chlorophyll parameter could detect higher variability in each cultivar, suggesting that I AD is a more rigorous parameter for detecting the developmental stage. The average weight, TSS, and TA were similar between astringent and non-astringent cultivars. Cracks appeared only on a few cultivars at harvest. Resistance to Alternaria infection and firmness were lower in astringent than in non-astringent cultivars. Only the astringent cultivar "32" was resistant to infection possibly due to the existence of an efficient peel barrier. It was concluded that a high correlation existed between astringency, susceptibility to Alternaria infection, and firmness. Cracks did not correlate with astringency or firmness. The phenotypic traits evaluated in this work can be used in future breeding programs for elite persimmon fruits.

19.
J Agric Food Chem ; 69(20): 5628-5637, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33983017

RESUMEN

Fruits of nonastringent persimmon cultivars, as compared to astringent ones, were more resistant to Alternaria infection despite having lower polyphenol content. Metabolic analysis from the pulp of nonastringent "Shinshu", as compared to the astringent "Triumph", revealed a higher concentration of salicylic, coumaric, quinic, 5-o-feruloyl quinic, ferulic acids, ß-glucogallin, gallocatechin, catechin, and procyanidins. Selected compounds like salicylic, ferulic, and ρ-coumaric acids inhibited in vitro Alternaria growth, and higher activity was demonstrated for methyl ferulic and methyl ρ-coumaric acids. These compounds also reduced in vivo Alternaria growth and the black spot disease in stored fruits. On the other hand, methyl gallic acid was a predominant compound in the "Triumph" pulp, as compared to the "Shinshu" pulp, and it augmented Alternaria growth in vitro and in vivo. Our results might explain the high sensitivity of the cultivar "Triumph" to Alternaria. It also emphasizes that specific phenolic compounds, and not the total phenol, affect susceptibility to fungal infection.


Asunto(s)
Diospyros , Alternaria , Astringentes , Frutas/química , Polifenoles/análisis
20.
Arch Microbiol ; 203(3): 1167-1174, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33226466

RESUMEN

Chickpea plant root colonizing bacteria Mesorhizobium ciceri Ca181 promotes plant growth and development through symbiotic association with root nodules. The potentially beneficial effects on plants generated due to this bacterium are mineral nutrient solubilization, abiotic stress tolerance, and nitrogen-fixation, though the molecular mechanisms underlying these probiotic capacities are still largely unknown. Hence, this study aims to describe the molecular mechanism of M. ciceri Ca181 in drought stress tolerance and phosphorus solubilization. Here we have developed the transposon inserted mutant library of strain Ca181 and further screened it to identify the phosphorous solubilization and PEG-induced drought stress tolerance defective mutants, respectively. Resultantly, a total of four and three mutants for phosphorous solubilization and drought stress tolerance were screened and identified. Consequently, Southern blot confirmation was done for the cross verification of insertions and stability in the genome. Through the sequencing of each mutant, the interrupted gene was confirmed, and the finding revealed that the production of gluconic acid is necessary for phosphorus solubilization, while otsA, Auc, and Usp genes were involved in the mechanism of drought stress tolerance in M. ciceri Ca181.


Asunto(s)
Cicer/microbiología , Mesorhizobium/genética , Raíces de Plantas/microbiología , Estrés Fisiológico , Sequías , Genes Bacterianos/genética , Fijación del Nitrógeno , Fosfatos/metabolismo , Estrés Fisiológico/genética , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...