Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Proteome Res ; 22(3): 660-680, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786770

RESUMEN

Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.


Asunto(s)
Brassica , Brassica/genética , Proteómica/métodos , Proteoma/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Desarrollo de la Planta , Estrés Fisiológico/genética
2.
J Fungi (Basel) ; 8(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35628709

RESUMEN

The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.

3.
Front Plant Sci ; 12: 721631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603351

RESUMEN

The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.

4.
Front Plant Sci ; 9: 1448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386353

RESUMEN

Increasing oil content in oilseed mustard (Brassica juncea) is a major breeding objective-more so, in the lines that have "0" erucic acid content (< 2% of the seed oil) as earlier studies have shown negative pleiotropic effect of erucic acid loci on the oil content, both in oilseed mustard and rapeseed. We report here QTL analysis of oil content in eight different mapping populations involving seven different parents-including a high oil content line J8 (~49%). The parental lines of the mapping populations contained wide variation in oil content and erucic acid content. The eight mapping populations were categorized into two sets-five populations with individuals segregating for erucic acid (SE populations) and the remaining three with zero erucic acid segregants (ZE populations). Meta-analysis of QTL mapped in individual SE populations identified nine significant C-QTL, with two of these merging most of the major oil QTL that colocalized with the erucic acid loci on the linkage groups A08 and B07. QTL analysis of oil content in ZE populations revealed a change in the landscape of the oil QTL compared to the SE populations, in terms of altered allelic effects and phenotypic variance explained by ZE QTL at the "common" QTL and observation of "novel" QTL in the ZE background. The important loci contributing to oil content variation, identified in the present study could be used in the breeding programmes for increasing the oil content in high erucic and "0" erucic backgrounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA