Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 364: 121425, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870789

RESUMEN

Ravine lands are the worst type of land degradation affecting soil quality and biodiversity. Crop production in such lands is impossible without adopting proper conservation measures. In-situ moisture conservation techniques could play an instrumental role in restoring ravine lands by improving soil moisture. We hypothesized that restoring ravine land through a combination of tree planting, fruit crop cultivation, and in-situ moisture conservation practice would result in significant improvements in productivity, profitability, and soil fertility. An experiment was conducted involving the combination of Malabar Neem (Melia dubia) and Dragon fruit (Hylocereus undatus) in conjunction with in-situ soil moisture conservation measures specifically involving half-moon structures (HM). The experiment was conducted under randomized block design (RBD) comprising eight treatments. These treatments include sole Melia cultivation (MD 3m × 3m), sole cultivation of dragon fruit (DF 3m × 3m), silviculture system (MDF-3m × 3m), horti-silviculture system with larger spacing (MDF-4m × 4m), sole Melia cultivation with in-situ moisture conservation (MDH-3m × 3m), sole Dragon fruit cultivation with in-situ moisture conservation (DFH-3m × 3m), horti-silviculture system of Melia and Dragon fruit with in-situ moisture conservation (MDFH-3m × 3m), and horti-silviculture system with larger spacing and in-situ moisture conservation (MDFH-4m × 4m). Each treatment was replicated thrice to evaluate their impact on productivity, profitability, soil fertility, and carbon sequestration for 8 years (2016-2023). The results revealed that the horti-silviculture system (MDFH-3 × 3 m) exhibited the highest total tree biomass and total carbon sequestration with an increase of 183.2% and 82.8% respectively, compared to sole Melia cultivation without HM and sole Melia with HM. Furthermore, sole Melia with HM augmented soil nutrients (N, P, K, and SOC) by 74.4%, 66.4%, 35.2%, and 78.3%, respectively, compared to control (no planting), with performance at par with MDFH-3 × 3 m. Similarly, sole Melia with HM enhanced SOC stock and SOC sequestration rate by 79.2% and 248% over control. However, it was found at par with MDFH-3 × 3 m. The horti-silviculture system (MDFH-3 × 3 m) consistently produced the highest fruit yield throughout the years surpassing other treatments. This treatment increased the average dragon fruit yield by 115.3% compared to sole dragon fruit without HM. Hence, the adoption of the horti-silviculture system (MDFH-3 × 3 m) could be a promising strategy for achieving enhanced environmental and economic benefits in ravine lands. Therefore, dragon fruit based horti-silviculture system (MDFH-3 × 3 m) could be recommended for restoration of ravine lands, improving land productivity, and mitigating impact of soil erosion particularly in Western India or similar agro-climatic regions of the world.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Agricultura/métodos
2.
Sci Rep ; 14(1): 868, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195737

RESUMEN

The present study was conducted to evaluate the genetic variability for morphological and qualitative traits of Coccinia for development of trait specific lines at ICAR-Central Horticultural Experiment Station (CIAH-RS), Panchmahals (Godhra), Gujarat during 2020-2022. In this study, we evaluated 26 gynoecious accessions to assess the genetic divergence through principal component and cluster analysis. The experiment was carried out in a randomized complete block design with three replications under rainfed semi-arid conditions. High values of PCV and GCV were observed for variables such as NFFP (25.13 and 22.20), PL (23.14 and 20.69), FD (24.01 and 21.46), AFW (22.98 and 20.13), NFPY (26.38 and 24.40), FYP (37.57 and 31.29), FY (35.55 and 33.20), AsC (28.65 and 27.73), Ac (24.32 and 21.06), TSS (37.23 and 35.94), DPPHL (20.71 and 20.38), FRAPL (21.08 and 20.92), TPF(20.81 and 20.45) respectively. High heritability coupled with high genetic advance as per cent of mean was observed for vine length (VL), internodal length (IL), number of female flowers per plant (NFFP), fruit length (FL), peduncle length (PL), fruit diameter (FD), average fruit weight (AFW), number of fruit per plant per year (NFPY), fruit yield per plant (FYP), fruit yield (FY), ascorbic acid (AsC), acidity (Ac), total soluble solids (TSS), total phenols in leaves TPL), total flavonoids in leaves TFL, CUPRAC in leaves (CUPRACL), DPPH in leaves (DPPHL), FRAP in leaves (FRAPL), Total phenols in fruits (TPF), Total flavonoids in fruits (TFF), CUPRAC in fruits (CUPRACF) and DPPH in fruits (DPPHF). The FYP exhibited a significant positive correlation with variables like VL (0.6833), IL (0.2991), NFFP (0.8107), FD (0.5245), AFW (0.6766), NFPY (0.7659), ASC (0.4611), TSS (0.5004) and TPF (0.4281). The estimates of genetic parameters revealed scope for further improvement of fruit yield by selection. Of the eight principal components, PC-I through PC-VIII had eigen values greater than 1 and it accounts 85.02% of the total variation for 26 gynoecious accessions of Ivy gourd. The eigen values of PC-I comprised 5.775% of total variation followed by PC-II (4.250%), PC-III (3.175%), PC-IV (2.588%), PC-V (1.828%), PC-VI (1.447%), PC-VII (1.179%) and PC-VIII (1.013%).The cluster VI and cluster I having highest mean values for most of traits under study. Thus, genotypes from the distinct cluster like cluster VI and I for should be used for selection of parents and varietal improvement for further breeding programme in ivy gourd.


Asunto(s)
Antioxidantes , Cucurbitaceae , Flavonoides , Variación Genética , Pirosis , Fenoles , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...