Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Genome ; : e20447, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38628142

RESUMEN

Sesame (Sesamum indicum L.) is an ancient oilseed crop belonging to the family Pedaliaceae and a globally cultivated crop for its use as oil and food. In this study, 2496 sesame accessions, being conserved at the National Genebank of ICAR-National Bureau of Plant Genetic Resources (NBPGR), were genotyped using genomics-assisted double-digest restriction-associated DNA sequencing (ddRAD-seq) approach. A total of 64,910 filtered single-nucleotide polymorphisms (SNPs) were utilized to assess the genome-scale diversity. Applications of this genome-scale information (reduced representation using restriction enzymes) are demonstrated through the development of a molecular core collection (CC) representing maximal SNP diversity. This information is also applied in developing a mid-density panel (MDP) comprising 2515 hyper-variable SNPs, representing almost equally the genic and non-genic regions. The sesame CC comprising 384 accessions, a representative set of accessions with maximal diversity, was identified using multiple criteria such as k-mer (subsequence of length "k" in a sequence read) diversity, observed heterozygosity, CoreHunter3, GenoCore, and genetic differentiation. The coreset constituted around 15% of the total accessions studied, and this small subset had captured >60% SNP diversity of the entire population. In the coreset, the admixture analysis shows reduced genetic complexity, increased nucleotide diversity (π), and is geographically distributed without any repetitiveness in the CC germplasm. Within the CC, India-originated accessions exhibit higher diversity (as expected based on the center of diversity concept), than those accessions that were procured from various other countries. The identified CC set and the MDP will be a valuable resource for genomics-assisted accelerated sesame improvement program.

2.
Brain ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456468

RESUMEN

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

3.
J Asthma ; 61(3): 249-259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37788160

RESUMEN

OBJECTIVES: To explore the efficacy of combination of Bhramari pranayama and om chanting as an adjunct to standard pharmacological treatment on asthma control, quality of life, pulmonary function, and airway inflammation in asthmatic children. METHODS: Children (n = 110; 8-15 years) with uncontrolled or partly controlled asthma were recruited from the Pediatric Chest Clinic of All India Institute of Medical Sciences, New Delhi. Eligible participants were randomized to either home-based online Bhramari pranayama and om chanting plus standard treatment (YI + ST) group, or standard treatment (ST) alone group. Primary outcome measures were 12-week change in level of asthma symptom control; asthma control questionnaire (ACQ) score, spirometry indices, impulse oscillometry parameters, and pediatric asthma quality of life questionnaire (PAQLQ) score. Secondary outcome was a change in fractional exhaled nitric oxide (FeNO) levels at 12 weeks. Beginning from the enrollment, every participant was evaluated at 0, 2, 6, and 12 weeks. RESULTS: After 12 weeks of intervention, higher proportion (68.2%) of children were found to have controlled asthma symptoms in the YI + ST group as compared to ST group (38.5%) according to per protocol analysis (p = 0.03). When compared to ST group, children in YI + ST group showed significantly lower ACQ score, higher PAQLQ score and reduced FeNO levels. No significant changes were observed for the lung function parameters. CONCLUSION: Children practicing Bhramari pranayama and om chanting for 12 weeks have better asthma symptom control, quality of life, and reduced airway inflammation than those taking standard pharmacotherapy alone.


Asunto(s)
Asma , Niño , Humanos , Asma/diagnóstico , Inflamación/tratamiento farmacológico , Óxido Nítrico/análisis , Control de Calidad , Calidad de Vida , Adolescente
4.
Food Sci Nutr ; 11(9): 5446-5459, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701188

RESUMEN

Quinoa belongs to the family Chenopodiaceae, a pseudo-grain having high nutritional value and is considered an underexploited vegetable crop with the potential to improve the nutritional security of millions. Therefore, assessing genetic diversity in Chenopodium germplasm to untap nutritional and site-specific adaptation potential would be of prime importance for breeders/researchers. The present study used 10 accessions of two Chenopodium species, that is, C. quinoa and C. album. Quantitative and qualitative phenotypic traits, proximate composition, minerals, and amino acids profiles were studied to compare the differences in nutritional value and extent of genetic diversity between these two species. Our results showed significant variation existed in yield attributing agro-morphological traits. All the traits were considered for hierarchical clustering and principal components analysis. Large genetic variability was observed in traits of Chenopodium accessions. The protein, dietary fiber, oil, and sugar content ranged from 16.6% to 19.7%, 16.8% to 26%, 3.54% to 8.46%, and 3.74% to 5.64%, respectively. The results showed that C. album and C. quinoa seeds had good nutritional value and health-promoting benefits. The C. quinoa was slightly ahead of than C. album in terms of nutritional value, but C. album accession IC415477 was at par for higher test weight, seed yield (117.02 g/plant), and other nutritional parameters with C. quinoa accessions. IC415477 and other potential accessions observed in this study may be taken up by breeders/researchers in the near future to dissect nutritional value of Chenopodium and related species for dietary diversity, which is imperative for the nutritional security of the ever-growing world's population.

5.
Analyst ; 148(18): 4242-4262, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37581493

RESUMEN

The intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial. Accordingly, the development of fluorescence imaging probes for targeting specific organelles and monitoring their dynamics at the molecular level has become the forefront of research in the last three decades. Among them, ratiometric fluorescent probes minimize the interference from the excitation wavelength of light, auto-fluorescence from probe concentration, environmental fluctuations, and instrument sensitivity through self-correction compared to monochromatic fluorescent probes, which are known as turn-on/off fluorescent probes. Small-molecular ratiometric fluorescent probes for detecting ΔpHi are challenging yet demanding. To date, sixty-two ratiometric pH probes have been reported for monitoring internal pH alterations in cellular organelles. However, a critical review on organelle-specific ratiometric probes for pH mapping is still lacking. Thus, in the present review, we report the most recent advances in ratiometric pH probes and the previous data on the role of mapping the ΔpHi of cellular organelles. The development strategy, including ratiometric fluorescence with one reference signal (RFRS) and ratiometric fluorescence with two reversible signals (RFRvS), is systematically illustrated. Finally, we emphasize the major challenges in developing ratiometric probes that merit further research in the future.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Espectrometría de Fluorescencia , Retículo Endoplásmico
7.
PLoS One ; 18(6): e0286599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267340

RESUMEN

To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.


Asunto(s)
Sesamum , Sesamum/genética , Genoma , Genotipo , Análisis de Secuencia de ADN/métodos , Secuencia de Bases
8.
Chem Asian J ; 18(12): e202300308, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126645

RESUMEN

Mitochondria are the powerhouse of the cell and function at pH ∼8.0. Dysfunctions of mitochondria, includes mitochondrial damage, leading to pH alteration. Hence, researchers aim to develop efficient pH probes for tracking mitochondrial pH dynamics. Herein, we developed a PET-based fluorescent probe for pH monitoring during mitochondrial dysfunctions. Three derivatives were synthesized with a variable spacer's length in pentacyclic pyridinium fluorophores (PM-C2, PM-C3, and PM-C6). An efficient electron transfers from the receptor (tertiary amine) was observed in the case of PM-C2 compared to the other two derivatives. This PET process was inhibited when tertiary amine was protonated in acidic pH. However, PM-C3 showed minimal fluorescence intensity at similar conditions and almost negligible change in case of PM-C6, suggesting poor PET process for both the derivatives. Furthermore, DFT/TD-DFT quantum chemical calculation well supported this optical phenomena and PET process. Biocompatible, photostable, and mitochondria-specific PM-C2 could monitor pH dynamics during mitochondrial damage which were engulfed by lysosome, also known as mitophagy. This mitophagy process were induced by rapamycin and starvation, which can be monitored by turn-on fluorescence enhancement. This process was further validated by tracking Parkin-protein translocation from cytoplasm to damaged mitochondria using our developed probe.


Asunto(s)
Mitofagia , Humanos , Células HeLa , Concentración de Iones de Hidrógeno , Colorantes Fluorescentes/química , Proteínas Mitocondriales
9.
Chemistry ; 29(32): e202300244, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37014630

RESUMEN

Esterases enzymes regulate the body's homeostasis by catalyzing the hydrolysis of various esters. These are also involved in protein metabolism, detoxification, and signal transmission. Most importantly, esterase plays a significant role in cell viability and cytotoxicity assays. Hence, developing an efficient chemical probe is essential for monitoring the esterase activity. Several fluorescent probes for esterase have also been reported targeting cytosol and lysosomes. However, the ability to create efficient probes is constrained due to a lack of understanding of the esterase's active site for hydrolyzing the substrate. In addition, the fluorescent turn-on may limit efficient monitoring. Herein, we have developed a unique fluorescent probe, PM-OAc, to monitor mitochondrial esterase enzyme activity ratiometrically. This probe exhibited a bathochromic wavelength shift with esterase enzyme in alkaline pH (pH∼8.0) due to an intramolecular charge transfer (ICT) process. The phenomenon is well supported by TD-DFT calculation. Moreover, the substrate (PM-OAc) binding at the active site of esterase and its catalytic mechanism to hydrolyze the ester bond are elucidated by molecular dynamics (MD) simulation and QM/MM (Quantum mechanics/molecular mechanics) calculations, respectively. Fluorescent image-based analysis of the cellular environment reveals that our probe can distinguish between live and dead cells based on esterase enzyme activity.


Asunto(s)
Esterasas , Colorantes Fluorescentes , Esterasas/química , Colorantes Fluorescentes/química , Hidrólisis , Mitocondrias/metabolismo , Ésteres
10.
Indian J Pathol Microbiol ; 66(2): 264-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077066

RESUMEN

Aim: High-grade glial tumors remain as one of the most lethal malignancies. Cyclin D1 is expressed in some human malignancies and is the potential target of intervention. The present study aims to determine the relationship of cyclin D1 expression with other clinicopathological parameters. Materials and Methods: A cross-sectional study was carried out in a tertiary care center. Biopsy proven 66 cases of glial tumor patients were included in the study. The patients with incomplete clinical details were excluded from the study. Immunohistochemistry using antibodies for IDH 1 and cyclin d1 was done in all the cases. Glial tumors were reclassified according to WHO 2016 classification. Data analysis was performed using SPSS 26.0 for the windows. Result: Among 66 patients, 49 (74.3%) were males and 17 (25.7%) were females. The age of the patients ranged from 20 years to 70 years. Overall, 6.02% were of grade I Glial tumors, 22.7% were of grade II Glial tumors, 19.6% patients were of grade III Glial tumors, and 51.6% patients were of grade IV Glial tumors. Of 66 samples tested cyclin D1 was positive in 25 (37.87%) as high expressers and 7 (10.60%) were low expressers. Our study showed a significant correlation between the expression of cyclin D1 with grade and IDH mutation status, No significant correlation of cyclin D1 was noted with age or sex of the patient. Conclusion: Cyclin D1 was associated with a higher grade of the glial tumor. It can be a potential marker both for prognosis and treatment of glial tumors.


Asunto(s)
Glioma , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Estudios Transversales , Glioma/patología , Inmunohistoquímica , Pronóstico , Estudios Retrospectivos , Ciclina D1/genética , Persona de Mediana Edad , Anciano
11.
Life (Basel) ; 13(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36983893

RESUMEN

Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species of Brassica for their potential tolerance against heat and drought stress during germination and in order to examine the early seedling stage. We identified the germplasms based on the mean membership function value (MFV), which was calculated from the tolerance index of shoot length, root length, and biochemical analysis. The study revealed that B. napus (GSC-6) could withstand high temperatures and drought. Other genotypes that were tolerant to the impact of heat stress were B. tournefortii (RBT 2002), D. gomez-campoi, B. tournefortii (Rawa), L. sativum, and B. carinata (PC-6). C. sativa resisted drought but did not perform well when subjected to high temperatures. Tolerance to drought was observed in B. fruticulosa (Spain), B. tournefortii (RBT 2003), C. bursa-pastoris (late), D. muralis, C. abyssinica (EC694145), C. abyssinica (EC400058) and B. juncea (Pusa Jaikisan). This investigation contributes to germplasm characterization and the identification of the potential source of abiotic stress tolerance in the Brassica breeding programme. These identified genotypes can be potential sources for transferring the gene(s)/genomic regions that determine tolerance to the elite cultivars.

12.
Monaldi Arch Chest Dis ; 94(1)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36843510

RESUMEN

Environmental pollution has harmful effects on human health, particularly the respiratory system. We aimed to study the impact of daily ambient air pollution on daily emergency room visits for acute respiratory symptoms. This study was conducted in two tertiary respiratory care centres in Delhi, India. Daily counts of emergency room visits were collected. All patients attending the emergency room were screened for acute onset (less than 2 weeks) of respiratory symptoms and were recruited if they were staying in Delhi continuously for at least 4 weeks and having onset (≤2 weeks) of respiratory symptoms. Daily average air pollution data for the study period was obtained from four continuous ambient air quality monitoring stations. A total of 61,285 patients were screened and 11,424 were enrolled from June 2017 to February 2019. Cough and difficulty in breathing were most common respiratory symptoms. Poor air quality was observed during the months of October to December. Emergency room visits with acute respiratory symptoms significantly increased per standard deviation increase in PM10 from lag days 2-7. Increase in wheezing was primarily seen with increase in NO2. Pollutant levels have effect on acute respiratory symptoms and thus influence emergency room visits. *************************************************************** *Appendix Authors list Kamal Singhal,1 Kana Ram Jat,2 Karan Madan,3 Mohan P. George,4 Kalaivani Mani,5 Randeep Guleria,3 Ravindra Mohan Pandey,5 Rupinder Singh Dhaliwal,6 Rakesh Lodha,2 Varinder Singh1 1Department of Paediatrics, Lady Hardinge Medical College and associated Kalawati Saran Children's Hospital, New Delhi, India 2Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India 3Department of Pulmonary Medicine, Critical Care and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India 4Department of Environment, Delhi Pollution Control Committee, Kashmere Gate, New Delhi, India 5Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India 6Department of Non-communicable Diseases, Indian Council of Medical Research, New Delhi, India.


Asunto(s)
Contaminación del Aire , Visitas a la Sala de Emergencias , Humanos , Niño , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Servicio de Urgencia en Hospital , India/epidemiología
13.
Front Genet ; 14: 996828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816034

RESUMEN

Legumes play a significant role in food and nutritional security and contribute to environmental sustainability. Although legumes are highly beneficial crops, it has not yet been possible to enhance their yield and production to a satisfactory level. Amid a rising population and low yield levels, per capita average legume consumption in India has fallen by 71% over the last 50 years, and this has led to protein-related malnutrition in a large segment of the Indian population, especially women and children. Several factors have hindered attempts to achieve yield enhancement in grain legumes, including biotic and abiotic pressures, a lack of good ideotypes, less amenability to mechanization, poorer responsiveness to fertilizer input, and a poor genetic base. Therefore, there is a need to mine the approximately 0.4 million ex situ collections of legumes that are being conserved in gene banks globally for identification of ideal donors for various traits. The Indian National Gene Bank conserves over 63,000 accessions of legumes belonging to 61 species. Recent initiatives have been undertaken in consortia mode with the aim of unlocking the genetic potential of ex situ collections and conducting large-scale germplasm characterization and evaluation analyses. We assume that large-scale phenotyping integrated with omics-based science will aid the identification of target traits and their use to enhance genetic gains. Additionally, in cases where the genetic base of major legumes is narrow, wild relatives have been evaluated, and these are being exploited through pre-breeding. Thus far, >200 accessions of various legumes have been registered as unique donors for various traits of interest.

14.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 2549-2552, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36452716

RESUMEN

Depth of Invasion (DOI) is an important and independent predictor for occult metastasis and recurrence. AJCC staging system (8th edition) has incorporated DOI in the staging of oral cancers. It is an essential parameter in deciding elective neck dissection. We hereby conducted a study to determine the accuracy of DOI in the frozen section as compared to the histological section in patients with T1N0 oral squamous cell carcinoma. This study was conducted over a period of 45 months in a tertiary care hospital. 31 patients with diagnosed Oral SCC and with T1N0 were enrolled. The intra-operative frozen section was done DOI was measured as per Cap protocol and compared with the DOI in the histopathological section. Strong correlation was found between DOI measured by frozen section and permanent section (r = 0.998; 95% CI, 0.999-0.997). The paired t test showed a mean difference of 0.0066 mm (95% CI, - 0.0103-0.02346 mm; P = 0.096) between frozen section and permanent section. DOI measured was slightly higher in frozen section however this difference was neither statically nor clinically significant.This study shows the accuracy of frozen specimens in determining tumor DOI in T1N0M0 in oral cavity squamous cell carcinoma. Intraoperative DOI along with other factors may be used to determine the need for END (elective neck dissection) in early-stage oral cavity squamous cell carcinoma and thus avoid a staged operation or over- or under-treatment of the neck.

15.
Cureus ; 14(9): e29686, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36320980

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, which started in 2019, has created unprecedented public health problems, mental health crises, and economic and social problems. These effects have been studied by numerous researchers on the general population but none on hospitalized and discharged COVID-19 patients. AIM: To assess psychological and social problems among hospitalized and discharged COVID-19 patients. METHODS: During lockdown and post-lockdown in India, we interviewed 500 COVID-19 patients admitted at our tertiary care center during their hospitalization and post-discharge period for psychological and social problems. RESULTS: The common psychological issues in hospitalized patients during lockdown were anxiety and misconceptions about COVID-19, while insomnia, anxiety, and frustration were common during the post-lockdown period. The typical social problems in hospitalized patients during the lockdown were containment-related issues, discrimination, longer wait for repeat COVID-19 tests, and boredom; whereas issues related to employment and financial matters were common during post-lockdown. Psychological problems comparatively decreased whereas social problems increased after discharge. CONCLUSION: Unrehearsed mitigation strategies at the beginning of the pandemic unknowingly led to various psychological and social problems. It was further aggravated by a lack of information and miscommunication.

16.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365434

RESUMEN

Sesame, one of the ancient oil crops, is an important oilseed due to its nutritionally rich seeds with high protein content. Genomic scale information for sesame has become available in the public databases in recent years. The genes and their families involved in oil biosynthesis in sesame are less studied than in other oilseed crops. Therefore, we retrieved a total of 69 genes and their translated amino acid sequences, associated with gene families linked to the oil biosynthetic pathway. Genome-wide in silico mining helped identify key regulatory genes for oil biosynthesis, though the findings require functional validation. Comparing sequences of the SiSAD (stearoyl-acyl carrier protein (ACP)-desaturase) coding genes with known SADs helped identify two SiSAD family members that may be palmitoyl-ACP-specific. Based on homology with lysophosphatidic acid acyltransferase (LPAAT) sequences, an uncharacterized gene has been identified as SiLPAAT1. Identified key regulatory genes associated with high oil content were also validated using publicly available transcriptome datasets of genotypes contrasting for oil content at different developmental stages. Our study provides evidence that a longer duration of active oil biosynthesis is crucial for high oil accumulation during seed development. This underscores the importance of early onset of oil biosynthesis in developing seeds. Up-regulating, identified key regulatory genes of oil biosynthesis during early onset of seed development, should help increase oil yields.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36229296
18.
Anal Chem ; 94(33): 11633-11642, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35968673

RESUMEN

Mitochondrial functions are heavily influenced by acid-base homeostasis. Hence, elucidation of the mitochondrial pH is essential in living cells, and its alterations during pathologies is an interesting question to be addressed. Small molecular fluorescent probes are progressively applied to quantify the mitochondrial pH by fluorescence imaging. Herein, we designed a unique small molecular fluorescent probe, PM-Mor-OH, based on the lipophilic morpholine ligand-conjugated pyridinium derivative of "IndiFluors". The morpholine-conjugated fluorescent probe usually localized the lysosome. However, herein, we observed unusual phenomena of morpholine-tagged PM-Mor-OH that localized mitochondria explicitly. The morpholine ligand also plays a pivotal role in tuning optical properties via photoinduced electron transfer (PET) during internal pH alteration (ΔpHi). In the mitophagy process, lysosomes engulf damaged mitochondria, leading to ΔpHi, which can be monitored using our probe. It exhibited "ratiometric" emission at single wavelength excitation (ex. 488) and is suitable for monitoring and quantifying the ΔpHi using confocal microscope high-resolution image analysis during mitophagy. The bathochromic emission shifts due to intramolecular charge transfer (ICT) in basic pH were well explained by the time-dependent density functional theory (TD-DFT/PCM). Similarly, the change in the emission ratio (green/red) with pH variations was also validated by the PET process. In addition, PM-Mor-OH can quantify the pH change during oxidative stress induced by rapamycin, mutant A53T α-synuclein-mediated protein misfolding stress in mitochondria, and during starvation. Rapamycin-induced mitophagy was further elucidated by the translocation of mCherry Parkin to damaged mitochondria, which well correlates with our probe. Thus, PM-Mito-OH is a valuable probe for visualizing mitophagy and can act as a suitable tool for the diagnosis of mitochondrial diseases.


Asunto(s)
Colorantes Fluorescentes , Mitofagia , Transporte de Electrón , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Ionóforos , Ligandos , Mitocondrias/metabolismo , Morfolinas , Sirolimus
19.
Int J Biochem Cell Biol ; 149: 106258, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777599

RESUMEN

Limited treatment options and research in understanding the pathomechanisms of rare diseases has raised concerns about their therapeutic development. One such poorly understood ultra-rare neuromuscular disorder is GNE Myopathy (GNEM) which is caused due to mutation in key sialic acid biosynthetic enzyme, GNE. Treatment with sialic acid or its derivatives/precursors slows the disease progression, but curative strategies need to be explored further. Pathologically, muscle biopsy samples of GNEM patients reveal rimmed vacuole formation due to aggregation of ß-amyloid, Tau, presenilin proteins with unknown mechanism. The present study aims to understand the mechanism of protein aggregate formation in GNE mutant cells to decipher role of chaperones in disease phenotype. The pathologically relevant GNE mutations expressed as recombinant proteins in HEK cells was used as a model system for GNEM to estimate extent of protein aggregation. We identified HSP70, a chaperone, as binding partner of GNE. Downregulation of HSP70 with altered BAG3, JNK, BAX expression levels was observed in GNE mutant cells. The cell apoptosis was observed in GNE mutation specific manner. An activator of HSP70 chaperone, BGP-15, rescued the phenotypic defects due to GNE mutation, thereby, reducing protein aggregation significantly. The results were further validated in rat skeletal muscle cell lines carrying single Gne allele. Our study suggests that HSP70 activators can be a promising therapeutic target in the treatment of ultra-rare GNE Myopathy disease.


Asunto(s)
Miopatías Distales , Agregado de Proteínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Humanos , Chaperonas Moleculares/metabolismo , Músculo Esquelético/metabolismo , Mutación , Ácido N-Acetilneuramínico/metabolismo , Fenotipo
20.
Front Nutr ; 9: 892695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711548

RESUMEN

Protein is one of the most abundant substances in plants and plays a major role in human health hence standardization of its analytical quantification method is essential. Various methods for protein quantification exist, such as Kjeldahl, Bradford, Lowry, bicinchoninic acid assay (BCA), Biuret, and total amino acid content methods. These methods are widely applied; however, the development of the rapid and efficient method is the need of the time hence the objective of this research was to analyze and comparing compare the modification of the Kjeldahl method for the determination of protein content in oilseed crops. The study was performed to improve the sample preparation method (processing and digestion) for protein quantification. Generally, the method initially requires homogenization of grains to a fine flour, which involves time and increases the risk of sample cross-contamination and partial loss of oil from the sample during grinding. Moreover at times, it becomes challenging to homogenize oil seeds to fine flour due to high oil content. However, in the present research, the whole grain was digested in place of grounded flour to accomplish quick protein quantification and compared it with the flour matrix of different oil seeds. To further reduce the digestion time and avoid frothing, we have used the modified digestion mixture. The developed method was statistically validated using analysis of variance (ANOVA), Pearson correlation reliability test, paired T-test, and different types of plot analysis. The validation of the sample preparation method in protein quantification demonstrated non-significant differences that the protein content from whole grain of all the five oilseed crops shows 100% non-significant results compared with the flour matrix in both the digestion mixtures. The developed novel method could be used to prepare the sample for protein analysis and reduces the overall analysis time while ensuring the accuracy of the results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...