Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 34(2): 220-240, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283811

RESUMEN

BACKGROUND: Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS: To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS: We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS: We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST: This article contains a podcast at.


Asunto(s)
Lesión Renal Aguda , Endotoxemia , Animales , Ratones , Biosíntesis de Proteínas , Sistemas de Lectura Abierta , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Endotoxemia/complicaciones , Modelos Animales de Enfermedad , Lesión Renal Aguda/genética , Proteína Fosfatasa 1
2.
J Biol Chem ; 298(10): 102371, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970386

RESUMEN

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Asunto(s)
Albúminas , Asparagina , Túbulos Renales Proximales , Receptores de Superficie Celular , Animales , Ratas , Albúminas/metabolismo , Endocitosis/fisiología , Glicosilación , Túbulos Renales Proximales/metabolismo , Proteinuria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
3.
Protein J ; 41(3): 381-393, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35674860

RESUMEN

A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.


Asunto(s)
Antineoplásicos , Magnoliopsida , Neoplasias , Antineoplásicos/farmacología , Apoptosis , Células HEK293 , Células Hep G2 , Humanos , Inosina/farmacología , Células MCF-7 , Magnoliopsida/química , Masculino , Neoplasias/tratamiento farmacológico , Proteínas de Plantas/farmacología , Dispersión del Ángulo Pequeño , Tripsina/metabolismo , Uridina Difosfato/farmacología , Difracción de Rayos X
4.
Sci Rep ; 8(1): 12602, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135452

RESUMEN

Here, we report that minimal functional gelsolin i.e. fragment 28-161 can display F-actin depolymerizing property even after heating the protein to 80 °C. Small angle X-ray scattering (SAXS) data analysis confirmed that under Ca2+-free conditions, 28-161 associates into monomer to dimer and tetramer, which later forms ß-amyloids, but in presence of Ca2+, it forms dimers which proceed to non-characterizable aggregates. The dimeric association also explained the observed decrease in ellipticity in circular dichroism experiments with increase in temperature. Importantly, SAXS data based models correlated well with our crystal structure of dimeric state of 28-161. Characterization of higher order association by electron microscopy, Congo red and ThioflavinT staining assays further confirmed that only in absence of Ca2+ ions, heating transforms 28-161 into ß-amyloids. Gel filtration and other experiments showed that ß-amyloids keep leaching out the monomer, and the release rates could be enhanced by addition of L-Arg to the amyloids. F-actin depolymerization showed that addition of Ca2+ ions to released monomer initiated the depolymerization activity. Overall, we propose a way to compose a supramolecular assembly which releases functional protein in sustained manner which can be applied for varied potentially therapeutic interventions.


Asunto(s)
Actinas/metabolismo , Gelsolina/metabolismo , Citoesqueleto de Actina , Factores Despolimerizantes de la Actina/metabolismo , Péptidos beta-Amiloides/metabolismo , Cristalografía por Rayos X , Gelsolina/fisiología , Calor , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...