Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 142(1): 90-105, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146239

RESUMEN

RNA-binding proteins (RBPs) form a large and diverse class of factors, many members of which are overexpressed in hematologic malignancies. RBPs participate in various processes of messenger RNA (mRNA) metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here, we report that PIWIL4, a germ stem cell-associated RBP belonging to the RNase H-like superfamily, is overexpressed in patients with acute myeloid leukemia (AML) and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. Instead, it largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates the human myeloid progenitor signature and leukemia stem cell (LSC)-associated genes and upregulates DNA damage signaling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patología , Células Madre Hematopoyéticas/metabolismo , Proliferación Celular , Genómica , ARN Mensajero/metabolismo , Células Madre Neoplásicas/patología
2.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265486

RESUMEN

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Asunto(s)
ARN Largo no Codificante , Telomerasa , Homeostasis del Telómero , Telómero/genética , Telómero/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Estructuras R-Loop/genética , Reparación del ADN
3.
Mol Cell ; 82(15): 2738-2753.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662392

RESUMEN

The proper function of the genome relies on spatial organization of DNA, RNA, and proteins, but how transcription contributes to the organization is unclear. Here, we show that condensates induced by transcription inhibition (CITIs) drastically alter genome spatial organization. CITIs are formed by SFPQ, NONO, FUS, and TAF15 in nucleoli upon inhibition of RNA polymerase II (RNAPII). Mechanistically, RNAPII inhibition perturbs ribosomal RNA (rRNA) processing, releases rRNA-processing factors from nucleoli, and enables SFPQ to bind rRNA. While accumulating in CITIs, SFPQ/TAF15 remain associated with active genes and tether active chromatin to nucleoli. In the presence of DNA double-strand breaks (DSBs), the altered chromatin compartmentalization induced by RNAPII inhibition increases gene fusions in CITIs and stimulates the formation of fusion oncogenes. Thus, proper RNAPII transcription and rRNA processing prevent the altered compartmentalization of active chromatin in CITIs, suppressing the generation of gene fusions from DSBs.


Asunto(s)
Cromatina , Transcripción Genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(12): e2116251119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290126

RESUMEN

RNA modifications regulate a variety of cellular processes including DNA repair.The RNA methyltransferase TRDMT1 generates methyl-5-cytosine (m5C) on messen-ger RNA (mRNA) at DNA double-strand breaks (DSBs) in transcribed regions, pro-moting transcription-coupled homologous recombination (HR). Here, we identifiedthat Fragile X mental retardation protein (FMRP) promotes transcription-coupled HRvia its interaction with both the m5C writer TRDMT1 and the m5C eraser ten-eleventranslocation protein 1 (TET1). TRDMT1, FMRP, and TET1 function in a temporalorder at the transcriptionally active sites of DSBs. FMRP displays a higher affinity forDNA:RNA hybrids containing m5C-modified RNA than for hybrids without modifica-tion and facilitates demethylation of m5C by TET1 in vitro. Loss of either the chroma-tin- or RNA-binding domain of FMRP compromises demethylation of damage-inducedm5C in cells. Importantly, FMRP is required for R-loop resolving in cells. Due to unre-solved R-loop and m5C preventing completion of DSB repair, FMRP depletion or lowexpression leads to delayed repair of DSBs at transcriptionally active sites and sensitizescancer cells to radiation in a BRCA-independent manner. Together, ourfindings presentan m5C reader, FMRP, which acts as a coordinator between the m5C writer and eraserto promote mRNA-dependent repair and cell survival in cancer.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Citosina , Desmetilación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Recombinación Homóloga , Humanos , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nature ; 594(7862): 283-288, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33981036

RESUMEN

Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.


Asunto(s)
ADN/genética , ADN/metabolismo , Recombinación Homóloga/genética , Estructuras R-Loop/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , ADN/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Genes/genética , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/metabolismo
6.
Nat Commun ; 11(1): 2834, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503981

RESUMEN

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/metabolismo , Animales , Línea Celular Tumoral , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Humanos , Metilación , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nucleic Acids Res ; 48(3): 1285-1300, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31777915

RESUMEN

Reactive oxygen species (ROS) inflict multiple types of lesions in DNA, threatening genomic integrity. How cells respond to ROS-induced DNA damage at telomeres is still largely unknown. Here, we show that ROS-induced DNA damage at telomeres triggers R-loop accumulation in a TERRA- and TRF2-dependent manner. Both ROS-induced single- and double-strand DNA breaks (SSBs and DSBs) contribute to R-loop induction, promoting the localization of CSB and RAD52 to damaged telomeres. RAD52 is recruited to telomeric R-loops through its interactions with both CSB and DNA:RNA hybrids. Both CSB and RAD52 are required for the efficient repair of ROS-induced telomeric DSBs. The function of RAD52 in telomere repair is dependent on its ability to bind and recruit POLD3, a protein critical for break-induced DNA replication (BIR). Thus, ROS-induced telomeric R-loops promote repair of telomeric DSBs through CSB-RAD52-POLD3-mediated BIR, a previously unknown pathway protecting telomeres from ROS. ROS-induced telomeric SSBs may not only give rise to DSBs indirectly, but also promote DSB repair by inducing R-loops, revealing an unexpected interplay between distinct ROS-induced DNA lesions.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa III/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Telómero/genética , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Estructuras R-Loop , Especies Reactivas de Oxígeno/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética
8.
Cell Rep ; 26(4): 955-968.e3, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30673617

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomerase-independent but recombination-dependent pathway that maintains telomeres. Here, we describe an assay to visualize ALT-mediated telomeric DNA synthesis in ALT-associated PML bodies (APBs) without DNA-damaging agents or replication inhibitors. Using this assay, we find that ALT occurs through two distinct mechanisms. One of the ALT mechanisms requires RAD52, a protein implicated in break-induced DNA replication (BIR). We demonstrate that RAD52 directly promotes telomeric D-loop formation in vitro and is required for maintaining telomeres in ALT-positive cells. Unexpectedly, however, RAD52 is dispensable for C-circle formation, a hallmark of ALT. In RAD52-knockout ALT cells, C-circle formation and RAD52-independent ALT DNA synthesis gradually increase as telomeres are shortened, and these activities are dependent on BLM and BIR proteins POLD3 and POLD4. These results suggest that ALT occurs through a RAD52-dependent and a RAD52-independent BIR pathway, revealing the bifurcated framework and dynamic nature of this process.


Asunto(s)
Roturas del ADN , ADN Polimerasa III/metabolismo , Replicación del ADN/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Homeostasis del Telómero/fisiología , Línea Celular Tumoral , ADN Polimerasa III/genética , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/genética
9.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567999

RESUMEN

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Asunto(s)
Biotinilación/métodos , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Factores de Transcripción/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Nat Commun ; 9(1): 4115, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297739

RESUMEN

Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Recombinación Homóloga , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Secuencia de Bases , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Helicasas/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Células HEK293 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Homología de Secuencia de Aminoácido
11.
Mol Cell ; 65(5): 832-847.e4, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257700

RESUMEN

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.


Asunto(s)
ADN/metabolismo , Inestabilidad Genómica , ARN/metabolismo , Proteína de Replicación A/metabolismo , Ribonucleasa H/metabolismo , Transcripción Genética , Sitios de Unión , ADN/química , ADN/genética , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Interferencia de ARN , Proteína de Replicación A/química , Proteína de Replicación A/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Factores de Tiempo , Transfección
12.
J Gen Virol ; 96(10): 3143-3158, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26251220

RESUMEN

Chilli, which encompasses several species in the genus Capsicum, is widely consumed throughout the world. In the Indian subcontinent, production of chilli is constrained due to chilli leaf curl disease (ChiLCD) caused by begomoviruses. Despite the considerable economic consequences of ChiLCD on chilli cultivation in India, there have been scant studies of the genetic diversity and structure of the begomoviruses that cause this disease. Here we report on a comprehensive survey across major chilli-growing regions in India. Analysis of samples collected in the survey indicates that ChiLCD-infected plants are associated with a complex of begomoviruses (including one previously unreported species) with a diverse group of betasatellites found in crops and weeds. The associated betasatellites neither enhanced the accumulation of the begomovirus components nor reduced the incubation period in Nicotiana benthamiana. The ChiLCD-associated begomoviruses induced mild symptoms on Capsicum spp., but both the level of helper virus that accumulated and the severity of symptoms were increased in the presence of cognate betasatellites. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The betasatellites possess high nucleotide variability, and recombination among them was also evident. The nucleotide substitution rates were determined for the AV1 gene of begomoviruses (2.60 × 10- 3 substitutions site- 1 year- 1) and the ßC1 gene of betasatellites [chilli leaf curl betasatellite (ChiLCB), 2.57 × 10- 4 substitution site- 1 year- 1; tomato leaf curl Bangladesh betasatellite (ToLCBDB), 5.22 × 10- 4 substitution site- 1 year- 1]. This study underscores the current understanding of Indian ChiLCD-associated begomoviruses and also demonstrates the crucial role of betasatellites in severe disease development in Capsicum spp.


Asunto(s)
Begomovirus/clasificación , Begomovirus/aislamiento & purificación , Capsicum/virología , Variación Genética , Enfermedades de las Plantas/virología , Virus Satélites/clasificación , Virus Satélites/aislamiento & purificación , Begomovirus/genética , India , Datos de Secuencia Molecular , Tasa de Mutación , Recombinación Genética , Virus Satélites/genética , Análisis de Secuencia de ADN , Nicotiana/virología
13.
Nucleic Acids Res ; 43(12): 5984-97, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26001966

RESUMEN

Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg(2+) bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to 'activate' RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ-RecQ (RecS) recombinational repair pathways.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Daño del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/genética , Eliminación de Gen
14.
J Biol Chem ; 289(40): 27640-52, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25138221

RESUMEN

Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP · Mg(2+)-bound form (RecA · ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA · ATP. This work demonstrates that RecA · ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA · dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Rec A Recombinasas/metabolismo , Recombinación Genética , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Rec A Recombinasas/genética
15.
J Biol Chem ; 288(31): 22437-50, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23779106

RESUMEN

Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de la Membrana/metabolismo , Rec A Recombinasas/metabolismo , Bacillus subtilis/genética , Biocatálisis , Cromosomas Bacterianos , Unión Proteica , Recombinación Genética
16.
Nucleic Acids Res ; 40(12): 5546-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22373918

RESUMEN

We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Modelos Moleculares , Rec A Recombinasas/metabolismo
17.
FEMS Microbiol Rev ; 35(6): 1055-81, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21517913

RESUMEN

In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.


Asunto(s)
Bacillus subtilis/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Recombinación Homóloga , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
18.
Nucleic Acids Res ; 38(20): 6920-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20581116

RESUMEN

Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a heterologous one. Analysis of non-productive intermediates reveals that RecO interacts with SsbA-coated ssDNA, resulting in transient ternary complexes. The self-interaction of ternary complexes via RecO led to the formation of large nucleoprotein complexes. In the presence of homology, SsbA, at the nucleoprotein, removes DNA secondary structures, inhibits spontaneous strand annealing and facilitates RecO loading onto SsbA-ssDNA complex. RecO relieves SsbA inhibition of strand annealing and facilitates transient and random interactions between homologous naked ssDNA molecules. Finally, both proteins lose affinity for duplex DNA. Our results provide a mechanistic framework for rationalizing protein release and dsDNA zippering as coordinated events that are crucial for RecA-independent plasmid transformation.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Bacillus subtilis/genética , ADN/química , ADN/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/ultraestructura , Microscopía de Fuerza Atómica , Recombinación Genética , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...