Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 12(1): 8, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778782

RESUMEN

BACKGROUND: Climate extremes such as drought and flood have become major constraints to the sustainable rice crop productivity in rainfed environments. Availability of suitable climate-resilient varieties could help farmers to reduce the grain yield losses resulting from the climatic extremities. The present study was undertaken with an aim to develop high-yielding drought and submergence tolerant rice varieties using marker assisted introgression of qDTY1.1, qDTY2.1, qDTY3.1 and Sub1. Performance of near isogenic lines (NILs) developed in the background of Swarna was evaluated across 60 multi-locations trials (MLTs). The selected promising lines from MLTs were nominated and evaluated in national trials across 18 locations in India and 6 locations in Nepal. RESULTS: Grain yield advantage of the NILs with qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 and qDTY2.1 + qDTY3.1 + Sub1 ranged from 76 to 2479 kg ha- 1 and 396 to 2376 kg ha- 1 under non-stress (NS) respectively and 292 to 1118 kg ha- 1 and 284 to 2086 kg ha- 1 under reproductive drought stress (RS), respectively. The NIL, IR96322-34-223-B-1-1-1-1 having qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 has been released as variety CR dhan 801 in India. IR 96321-1447-651-B-1-1-2 having qDTY1.1 + qDTY3.1 + Sub 1 and IR 94391-131-358-19-B-1-1-1 having qDTY3.1 + Sub1 have been released as varieties Bahuguni dhan-1' and 'Bahuguni dhan-2' respectively in Nepal. Background recovery of 94%, 93% and 98% was observed for IR 96322-34-223-B-1-1-1-1, IR 96321-1447-651-B-1-1-2 and IR 94391-131-358-19-B-1-1-1 respectively on 6 K SNP Infinium chip. CONCLUSION: The drought and submergence tolerant rice varieties with pyramided multiple QTLs can ensure 0.2 to 1.7 t ha- 1 under reproductive stage drought stress and 0.1 to 1.0 t ha- 1 under submergence conditions with no yield penalty under non-stress to farmers irrespective of occurrence of drought and/or flood in the same or different seasons.

2.
J Exp Bot ; 65(21): 6265-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25205576

RESUMEN

The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1 , qDTY 2.2 , qDTY 3.1 , qDTY 3.2 , qDTY 6.1 , and qDTY 12.1 ) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding.


Asunto(s)
Cruzamiento/métodos , Sequías , Oryza/genética , Sitios de Carácter Cuantitativo , Selección Genética , Biomasa , Interacción Gen-Ambiente , Variación Genética , Oryza/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...