Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Rep (Hoboken) ; 7(2): e1955, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173189

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small molecules that have prominent roles in tumor development and metastasis and can be used for diagnostic and therapeutic purposes. This study evaluated the expression of miR-92a-3p and miR-1245b-5p and their potential target gene, GATA3 in patients with breast cancer (BC). MATERIALS AND METHODS: In the search for BC-related microRNAs, miR-124b-5p and miR-92a-3p were selected using Medline through PubMed, miR2disease, miRcancer and miRTarBase. Moreover, target gene GATA3 and their possible interaction in the regulating epithelial-mesenchymal transition (EMT) and invasion was evaluated using in silico tools including miRTarBase, TargetScan, STRING-db, and Cytoscape. The expression level of miR-92a-3p, miR1245b-5p, and GATA3 were assessed on extracted RNAs of tumor and nontumor tissues from 36 patients with BC using qPCR. Additionally, clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node were taken into consideration and the diagnostic power of these miRNAs and GATA3 was evaluated using the ROC curve analysis. RESULTS: In silico evaluation of miR-92a-3p and miR-1245b-5p supports their potential association with EMT and invasion signaling pathways in BC pathogenesis. Comparing tumor tissues to nontumor tissues, we found a significant downregulation of miR-1245b-5p and miR-92a-3p and upregulation of GATA3. Patients with BC who had decreased miR-92a-3p expression also had higher rates of advanced stage/grade and ER expression, whereas decreased miR-1245b-5p expression was only linked to ER expression and was not associated with lymph node metastasis. The AUC of miR-1245b-5p, miR-92a-3p, and GATA3 using ROC curve was determined 0.6449 (p = .0239), 0.5980 (p = .1526), and 0.7415 (p < .0001), respectively, which showed a significant diagnostic accuracy of miR-1245b-5p and GATA3 between the BC patients and healthy individuals. CONCLUSION: MiR-1245b-5p, miR-92a-3p, and GATA3 gene contribute to BC pathogenesis and they may be having potential regulatory roles in signaling pathways involved in invasion and EMT pathways in BC pathogenesis, as a result of these findings. More research is needed to determine the regulatory mechanisms that they control.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo
2.
IUBMB Life ; 75(2): 97-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36309967

RESUMEN

Breast cancer is the most aggressive and fatal form of cancer among women globally. Although the role of some miRNAs that are often dysregulated in breast cancer has been deciphered, the regulatory function of others still remains unknown. The current study was aimed at determining the biological role and underlying mechanism of miR-548k in breast cancer. In this study, the significant overexpression of miR-548k in breast cancer tissues compared to adjacent normal tissues was confirmed. Also, bioinformatics analysis indicated that PTEN, as a negative regulator of PI3K/AKT signaling pathway, was a potential target of miR-548k, and its expression was downregulated in breast cancer tissues rather than normal tissues. Furthermore, the ectopic increase of miR-548k decreased the expression of PTEN in breast cancer, suggesting that PTEN is one of the potential downstream targets of miR-548k. Besides, functional analysis was conducted to assess the capability of miR-548k to alter apoptosis along with the changed expression levels of miR-548k in breast cancer cells. Based on this investigation, forced increase of miR-548k disrupted programmed cell death in MCF-7 cells. Apart from this, in silico study of miR-548 family supported its association with the main components of PI3K/Akt signaling pathway, opening a prospective research area in cancer therapy. In brief, suppression of PTEN partly mediated by miR-548k diminished apoptosis and promoted cell proliferation through PI3K/Akt pathway in breast cancer, suggesting a novel therapeutic axis, miR-548k/PTEN/ PI3K/Akt, for treatment of breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/genética , Estudios Prospectivos , Transducción de Señal/genética , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
3.
Int Immunopharmacol ; 100: 108071, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34482267

RESUMEN

COVID-19 is the cause of a pandemic associated with substantial morbidity and mortality. As yet, there is no available approved drug to eradicate the virus. In this review article, we present an alternative study area that may contribute to the development of therapeutic targets for COVID-19. Growing evidence is revealing further pathophysiological mechanisms of COVID-19 related to the disregulation of inflammation pathways that seem to play a critical role toward COVID-19 complications. The NF-kB and JAK/STAT signaling pathways are highly activated in acute inflammation, and the excessive activity of these pathways in COVID-19 patients likely exacerbates the inflammatory responses of the host. A group of non-coding RNAs (miRNAs) manage certain features of the inflammatory process. In this study, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of COVID-19 disease. Furthermore, previous studies published in the online databases, namely web of science, MEDLINE (PubMed), and Scopus, were reviewed for the potential role of miRNAs in the inflammatory manifestations of COVID-19. Moreover, we disclosed the interactions of inflammatory genes using STRING DB and designed interactions between miRNAs and target genes using Cityscape software. Several miRNAs, particularly miR-9, miR-98, miR-223, and miR-214, play crucial roles in the regulation of NF-kB and JAK-STAT signaling pathways as inflammatory regulators. Therefore, this group of miRNAs that mitigate inflammatory pathways can be further regarded as potential targets for far-reaching-therapeutic strategies in COVID-19 diseases.


Asunto(s)
COVID-19/etiología , Inflamación/etiología , Quinasas Janus/fisiología , MicroARNs/fisiología , FN-kappa B/fisiología , SARS-CoV-2 , Factores de Transcripción STAT/fisiología , Humanos , Transducción de Señal/fisiología
4.
Life Sci ; 269: 119027, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33453248

RESUMEN

Identifying miRNAs involved in cancer and devising strategies to control their expression is a new therapeutic approach. Valproic acid (VPA) has attracted a lot of interest in cancer research. We evaluated the impact of VPA on the expression of miR-34a, miR-520h, and their target gene histone deacetylase 1 (HDAC1), as well as their relationship with apoptosis in breast cancer. First, through bioinformatics analyses, the possible target genes of miR-34a and miR-520h and their roles in apoptosis regulation were investigated. Then, miR-34a, miR-520h, and HDAC1 gene expression in tissues of breast cancer patients were determined using the qRT-PCR method. The anticancer impact of VPA on apoptosis and the expression levels of miR-34a, miR-520h, and HDAC1 gene were measured in MCF-7 and MDA-MB-231 cell lines. The bioinformatics analyses indicated that miR-34a and miR-520h might make a unique contribution in regulating the apoptosis pathway. The relative expression of miR-34a and miR-520h significantly decreased in cancer tissues, while the relative expression of HDAC1 increased. In the in vitro study, VPA led to apoptosis induction and increased lipid peroxidation products in breast cancer cells. Moreover, VPA increased the expression of miR- 34a and miR-520h and decreased HDAC1 expression in MCF-7 cells. In MDA-MB-231 cells, VPA decreased the expression of these miRNAs and increased the expression of HDAC1. It can be concluded that miR-34a and miR-520h are implicated in the apoptosis pathways, and thus, VPA can recruit as a possible option in breast cancer research due to its interference with epigenetic processes.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Histona Desacetilasa 1/genética , MicroARNs/genética , Ácido Valproico/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Histona Desacetilasa 1/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , MicroARNs/metabolismo , Persona de Mediana Edad , Curva ROC , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA