Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36826862

RESUMEN

Cu addition to alloys for biomedical applications has been of great interest to reduce bacterial growth. In situ-alloyed Ti6Al4V(ELI)-3at.%Cu was successfully manufactured by laser powder bed fusion (L-PBF). Even so, post-heat treatments are required to avoid distortions and/or achieve required/desired mechanical and fatigue properties. The present study is focused on the investigation of microstructural changes in L-PBF Ti6Al4V(ELI)-3at.%Cu after stress relieving and annealing treatments, as well as their influence on osteoblast and bactericidal behavior. After the stress relieving treatment, a homogenously distributed ß phase and CuTi2 intermetallic precipitates were observed over the α' matrix. The annealing treatment led to the increase in amount and size of both types of precipitates, but also to phase redistribution along α lamellas. Although microstructural changes were not statistically significant, such increase in ß and CuTi2 content resulted in an increase in osteoblast proliferation after 14 days of cell culture. A significant bactericidal behavior of L-PBF Ti6Al4V(ELI)-3at.%Cu by means of ion release was found after the annealing treatment, provably due to the easier release of Cu ions from ß phase. Biofilm formation was inhibited in all on Cu-alloyed specimens with stress relieving but also annealing treatment.

2.
3D Print Addit Manuf ; 9(4): 288-300, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36660231

RESUMEN

Laser powder bed fusion (LPBF) is a promising technology that requires further work to improve productivity to be adopted more widely. One possible approach is to increase the laser power and scan speed. A customized high-speed and high-power LPBF system has been developed for this purpose. The current study investigated the surface roughness and near-surface porosity as a result of unsupported overhangs at varying inclination angles and orientations during the manufacturing of Ti6Al4V parts with this custom high-speed and high-power LPBF system. It is known that surface roughness and porosity are among the main drawbacks for parts manufactured by LPBF, and that supports are required for overhang regions with low inclination angles relative to the powder bed, typically in commercial LPBF systems requiring supports for regions with inclination angles less than 45°. However, the appropriate inclination angles for this custom system with high power and speed requires investigation. In this article, a simple benchmark test artefact with different inclination angles was manufactured in different orientations on the build platform and characterized by X-ray tomography, touch probe roughness meter, optical microscopy, and scanning electron microscopy. The analysis of surface roughness and near-surface porosity at upskin and downskin regions was performed as a function of inclination angle. The results indicate that the high-speed LPBF process produces relatively high roughness in all cases, with different porosity distributions at upskin and downskin areas. Both roughness and porosity vary as a function of inclination angle. Significant warping was observed, depending on build orientation relative to laser scanning direction. These are the first reported results of the detailed surface roughness and porosity characterization of part quality from such a high-speed, high-power LPBF process.

3.
Materials (Basel) ; 14(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885415

RESUMEN

The intensive cytotoxicity of pure copper is effectively kills bacteria, but it can compromise cellular behavior, so a rational balance must be found for Cu-loaded implants. In the present study, the individual and combined effect of surface composition and roughness on osteoblast cell behavior of in situ alloyed Ti6Al4V(ELI)-3 at.% Cu obtained by laser powder bed fusion was studied. Surface composition was studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Surface roughness measurements were carried out using confocal microscopy. In vitro osteoblast performance was evaluated by means of cell morphology observation of cell viability, proliferation, and mineralization. In vitro studies were performed at 1, 7, and 14 days of cell culture, except for cell mineralization at 28 days, on grounded and as-built (rough) samples with and without 3 at.% Cu. The addition of 3 at.% Cu did not show cell cytotoxicity but inhibited cell proliferation. Cell mineralization tends to be higher for samples with 3 at.% Cu content. Surface roughness inhibited cell proliferation too, but showed enhanced cell mineralization capacity and therefore, higher osteoblast performance, especially when as-built samples contained 3 at.% Cu. Cell proliferation was only observed on ground samples without Cu but showed the lowest cell mineralization.

4.
Materials (Basel) ; 11(9)2018 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205590

RESUMEN

This paper reports on the production and mechanical properties of Ti6Al4V microlattice structures with strut thickness nearing the single-track width of the laser-based powder bed fusion (LPBF) system used. Besides providing new information on the mechanical properties and manufacturability of such thin-strut lattices, this paper also reports on the in situ deformation imaging of microlattice structures with six unit cells in every direction. LPBF lattices are of interest for medical implants due to the possibility of creating structures with an elastic modulus close to that of the bones and small pore sizes that allow effective osseointegration. In this work, four different cubes were produced using laser powder bed fusion and subsequently analyzed using microCT, compression testing, and one selected lattice was subjected to in situ microCT imaging during compression. The in situ imaging was performed at four steps during yielding. The results indicate that mechanical performance (elastic modulus and strength) correlate well with actual density and that this performance is remarkably good despite the high roughness and irregularity of the struts at this scale. In situ yielding is visually illustrated.

5.
J Mech Behav Biomed Mater ; 82: 218-223, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621689

RESUMEN

Many animal species evolved some form of body armor, such as scales of fish and bony plates or osteoderms of reptiles. Although a protective function is often taken for granted, recent studies show that body armor might comprise multiple functionalities and is shaped by trade-offs among these functionalities. Hence, despite the fact that natural body armor might serve as bio-inspiration for the development of artificial protective materials, focussing on model systems in which body armor serves a solely protective function might be pivotal. In this study, we investigate the osteoderms of Glyptotherium arizonae, an extinct armadillo-like mammal in which body armor evolved as protection against predators and/or tail club blows of conspecifics. By using a combination of micro-computed tomography, reverse-engineering, stress simulations and mechanical testing of 3D printed models, we show that the combination of dense compact layers and porous lattice core might provide an optimized combination of strength and high energy absorption.


Asunto(s)
Biomimética , Mamíferos/anatomía & histología , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos
6.
Materials (Basel) ; 10(10)2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972546

RESUMEN

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...