Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114638, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39167486

RESUMEN

Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.

2.
Nature ; 567(7746): 100-104, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787434

RESUMEN

Sensory experience in early postnatal life, during so-called critical periods, restructures neural circuitry to enhance information processing1. Why the cortex is susceptible to sensory instruction in early life and why this susceptibility wanes with age are unclear. Here we define a developmentally restricted engagement of inhibitory circuitry that shapes localized dendritic activity and is needed for vision to drive the emergence of binocular visual responses in the mouse primary visual cortex. We find that at the peak of the critical period for binocular plasticity, acetylcholine released from the basal forebrain during periods of heightened arousal directly excites somatostatin (SST)-expressing interneurons. Their inhibition of pyramidal cell dendrites and of fast-spiking, parvalbumin-expressing interneurons enhances branch-specific dendritic responses and somatic spike rates within pyramidal cells. By adulthood, this cholinergic sensitivity is lost, and compartmentalized dendritic responses are absent but can be re-instated by optogenetic activation of SST cells. Conversely, suppressing SST cell activity during the critical period prevents the normal development of binocular receptive fields by impairing the maturation of ipsilateral eye inputs. This transient cholinergic modulation of SST cells, therefore, seems to orchestrate two features of neural plasticity-somatic disinhibition and compartmentalized dendritic spiking. Loss of this modulation may contribute to critical period closure.


Asunto(s)
Potenciales de Acción , Período Crítico Psicológico , Dendritas/metabolismo , Corteza Visual/citología , Corteza Visual/fisiología , Acetilcolina/metabolismo , Animales , Señalización del Calcio , Femenino , Interneuronas/metabolismo , Masculino , Ratones , Inhibición Neural , Vías Nerviosas , Plasticidad Neuronal/fisiología , Fenómenos Fisiológicos Oculares , Optogenética , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Somatostatina/metabolismo , Visión Binocular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA