Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Death Discov ; 10(1): 47, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272916

RESUMEN

DNA repair is essential for successful propagation of genetic material and fidelity of transcription. Nucleotide excision repair (NER) is one of the earliest DNA repair mechanisms, functionally conserved from bacteria to human. The fact that number of NER genes vary significantly between prokaryotes and metazoans gives the insight that NER proteins have evolved to acquire additional functions to combat challenges associated with a diploid genome, including being involved in the decision between DNA repair and apoptosis. However, no direct association between apoptosis and NER proteins has been shown to date. In this study, we induced apoptosis with a variety of agents, including oxaliplatin, doxorubicin and TRAIL, and observed changes in the abundance and molecular weight of NER complex proteins. Our results showed that XPA, XPC and ERCC1 protein levels change during DNA damage-induced apoptosis. Among these, ERCC1 decrease was observed as a pre-mitochondria depolarisation event which marks the "point of no return" in apoptosis signalling. ERCC1 decrease was due to proteasomal degradation upon lethal doses of oxaliplatin exposure. When ERCC1 protein was stabilised using proteasome inhibitors, the pro-apoptotic activity of oxaliplatin was attenuated. These results explain why clinical trials using proteasome inhibitors and platinum derivatives showed limited efficacy in carcinoma treatment and also the importance of how deep understanding of DNA repair mechanisms can improve cancer therapy.

2.
FEBS Open Bio ; 14(2): 309-321, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38098212

RESUMEN

The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth. To investigate the mechanisms and pathogenesis of Rahman syndrome, we developed a cellular model using murine embryonic stem cells (mESCs) and CRISPR/Cas9 genome engineering. Our engineered mES cells facilitate detailed investigations, such as H1-4 dynamics, immunoprecipitation, and nuclear localization; in addition, we tagged the mutant H1-4 with a photoactivatable GFP (PA-GFP) and an HA tag to facilitate pulldown assays. We anticipate that these engineered cells could also be used for the development of a mouse model to study the in vivo role of the H1-4 protein.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Animales , Ratones , Cromatina , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo
3.
Photodiagnosis Photodyn Ther ; 43: 103667, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37355078

RESUMEN

In the current study, we synthesized a new SiPc derivative conjugated with arginine at the axial positions, for a novel phthalocyanine-based photosensitizer for photodynamic therapy (PDT) applications in cancer cells. Axially-di-arginine substituted new silicon(IV) phthalocyanine photosensitizer (PS-5a) has been thoroughly researched for its anti-cancer properties. Various spectroscopic techniques were used to characterize this conjugate, including 1H NMR, 13C NMR, FT-IR, UV-vis, and MS spectral data. The in vitro PDT activities of the conjugate on cancer cells were tested through its cytotoxic, clonogenic, apoptotic effects on, and its capacity to induce DNA damage, and the disruption of mitochondrial membrane potential in cancer cell lines (liver; HuH-7, cervix; HeLa and breast; MCF7). Cancer cells exposed to the light illumination following uptake of the PS-5a as a photosensitizer revealed DNA breakage and collapsed mitochondrial membrane potential. The results of the present investigation demonstrate that PS-5a has a significant photo-cytotoxic effect on cancer cells. So, axially-di-arginine substituted silicon(IV) phthalocyanine could be an effective PDT agent for PDT treatment.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Femenino , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Células HeLa
4.
J Gastrointest Cancer ; 53(2): 356-362, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33656690

RESUMEN

PURPOSE: Plexin C1 is a transmembrane receptor and plexin C1 overexpression might have role in carcinogenesis. Hepatocellular carcinoma (HCC) has poor prognosis because of its aggressive behavior and limited treatment options, especially in advanced stage. We recently documented that Plexin C1 was overexpressed in HCC. We aimed to evaluate the prognostic significance of Plexin C1 overexpression in HCC in the present study. METHODS: Plexin C1 overexpression was evaluated immunohistochemically on paraffin-embedded blocks of the HCC patients. Plexin C1 immunohistochemical staining was scored. Plexin C1 overexpression staining intensity and prevalence were used for plexin scale staining evaluation and plexin scores were estimated according this staining scale. Plexin C1 score and its association with survival and clinicopathological features was assessed. RESULTS: Sixty-seven HCC patients with adequate tissue for pathological evaluation were included. Median age was 63 years with male predominance (male to female ratio was 4.75 (n 57/12). Well-differentiated HCC (53.7%) patients had higher plexin C1 overexpression (p < 0.05). Median OS was 22.1 months. Patients with lower plexin C1 score (< 12) had shorter OS (17.5 vs 30.1 months, p = 0.036). Neutrophil count, GGT, and PNR (platelet/neutrophil ratio) had prognostic significance (p = 0.047, p = 0.018, and p = 0.045). CONCLUSION: Plexin C1 overexpression is inversely correlated with grade in HCC. The patients with lower rate of Plexin C1 overexpression have worse survival outcome. It might be a prognostic factor in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Virales , Biomarcadores de Tumor , Carcinoma Hepatocelular/patología , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Pronóstico , Receptores Virales/genética , Turquía
5.
Mol Oncol ; 15(8): 2065-2083, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33931939

RESUMEN

Resistance to adjuvant chemotherapy is a major clinical problem in the treatment of colorectal cancer (CRC). The aim of this study was to elucidate the role of an epithelial to mesenchymal transition (EMT)-inducing protein, ZEB2, in chemoresistance of CRC, and to uncover the underlying mechanism. We performed IHC for ZEB2 and association analyses with clinical outcomes on primary CRC and matched CRC liver metastases in compliance with observational biomarker study guidelines. ZEB2 expression in primary tumours was an independent prognostic marker of reduced overall survival and disease-free survival in patients who received adjuvant FOLFOX chemotherapy. ZEB2 expression was retained in 96% of liver metastases. The ZEB2-dependent EMT transcriptional programme activated nucleotide excision repair (NER) pathway largely via upregulation of the ERCC1 gene and other components in NER pathway, leading to enhanced viability of CRC cells upon oxaliplatin treatment. ERCC1-overexpressing CRC cells did not respond to oxaliplatin in vivo, as assessed using a murine orthotopic model in a randomised and blinded preclinical study. Our findings show that ZEB2 is a biomarker of tumour response to chemotherapy and risk of recurrence in CRC patients. We propose that the ZEB2-ERCC1 axis is a key determinant of chemoresistance in CRC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Transición Epitelial-Mesenquimal/genética , Transcripción Genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/fisiología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Fluorouracilo/uso terapéutico , Humanos , Leucovorina/uso terapéutico , Neoplasias Hepáticas/secundario , Ratones , Compuestos Organoplatinos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cells ; 8(3)2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832318

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common and deadly cancer; however, very little improvement has been made towards its diagnosis and prognosis. The expression and functional contribution of the receptor tyrosine kinase ROR1 have not been investigated in HCC before. Hence, we investigated the expression of ROR1 in HCC cells and assessed its involvement in hepatocarcinogenesis. METHODS: Recombinant bacterial ROR1 protein was used as an immunogen to generate ROR1 monoclonal antibodies. ROR1 transcript levels were detected by RT-qPCR and the protein expression of ROR1 in HCC was assessed by Western blotting by using homemade anti-ROR1 monoclonal antibodies. Apoptosis, cell cycle, trans-well migration, and drug efflux assays were performed in shRNA-ROR1 HCC cell clones to uncover the functional contribution of ROR1 to hepatocarcinogenesis. RESULTS: New ROR1 antibodies specifically detected endogenous ROR1 protein in human and mouse HCC cell lines. ROR1-knockdown resulted in decreased proliferation and migration but enhanced resistance to apoptosis and anoikis. The observed chemotherapy-resistant phenotype of ROR1-knockdown cells was due to enhanced drug efflux and increased expression of multi-drug resistance genes. CONCLUSIONS: ROR1 is expressed in HCC and contributes to disease development by interfering with multiple pathways. Acquired ROR1 expression may have diagnostic and prognostic value in HCC.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/enzimología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Animales , Anoicis/efectos de los fármacos , Anoicis/genética , Anticuerpos Monoclonales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Fenotipo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Mol Carcinog ; 58(6): 1068-1081, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790340

RESUMEN

Epithelial-mesenchymal transition (EMT) is an embryonic program that is reactivated in cancer and regulates the invasion and metastasis of tumor cells. Zinc finger E-box binding homeobox 2 (ZEB2) induces EMT by upregulating matrix metalloproteinases (MMP), yet MMP genes lack ZEB2 binding motif in their promoters. Recently, expression of MMPs was associated to the activation of ETS1 transcription factor; however, a link between ZEB2 and ETS proto-oncogene 1, transcription factor (ETS1) remains to be elucidated. Hence, we investigated the transcriptional regulation of ETS1 by ZEB2 after our initial observation that ZEB2 and ETS1 are coexpressed in hepatocellular carcinoma cells (HCCs). Chromatin immunoprecipitation and luciferase reporter assays clearly showed that ZEB2 binds to E-box sequences on the promoter of ETS1. Elevated expression of ETS1 was found in DLD-ZEB2 and A431-ZEB2 inducible systems, and knockdown of ZEB2 caused an explicit downregulation of ETS1 in shZEB2-SNU398 and shZEB2-SK-HEP-1 cells. Repression of ETS1 expression in ZEB2-induced conditions substantially impaired the migration and invasive capacities of DLD1 cells. Mechanistically, knockdown of ETS1 in ZEB2-expressing cells resulted in the downregulation of established ZEB2 targets TWIST and MMP9. Correlation analyses in HCC lines, cancer complementary DNA arrays, and The Cancer Genome Atlas RNA-sequencing data set revealed that ZEB2 and ETS1 are coexpressed, and their expressions in human tumors show a highly significant positive correlation. Our results demonstrated that ZEB2 acts as an upstream regulator of ETS1 and, in turn, ETS1 maintains ZEB2-induced EMT. These findings add another level of complexity to the understanding of ZEB2 in the invasion and metastasis of cancer cells, and put ZEB2/ETS1 axis as a novel therapeutic target in human malignancies.


Asunto(s)
Neoplasias/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proto-Oncogenes Mas , Proteína Proto-Oncogénica c-ets-1/química , Proteína 1 Relacionada con Twist/metabolismo
8.
Can J Gastroenterol Hepatol ; 2018: 4040787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30327758

RESUMEN

Background and Aims: Hepatocellular carcinoma is an aggressive malignancy of the liver and is ranked as the sixth most common cancer worldwide. There is still room for novel markers to improve the diagnosis and monitoring of HCC. Our observations in cancer databases that PLXNC1 is upregulated in HCC led us to investigate the expression profile of Plexin C1 mRNA and protein in HCC cell lines and tissues. Methods: A recombinant protein encompassing part of the extracellular domain of Plexin C1 was used as an antigen for monoclonal antibody development. Transcript and protein levels of Plexin C1 in HCC cell lines were determined by RT-qPCR and Western blotting, respectively. In vivo evaluation of Plexin C1 expression in HCC tissues was accomplished by immunohistochemistry studies in tissue microarrays. Results: A monoclonal antibody, clone PE4, specific to Plexin C1, was generated. In silico and in vitro analyses revealed a Plexin C1-based clustering of well-differentiated HCC cell lines. Staining of HCC and nontumoral liver tissues with PE4 showed a membrane-localized overexpression of Plexin C1 in tumors (p=0.0118). In addition, this expression was correlated with the histological grades of HCC cases. Conclusions: Plexin C1 distinguishes HCC cells of epithelial characteristics from those with the mesenchymal phenotype. Compared to the nontumoral liver, HCC tissues significantly overexpress Plexin C1. The newly generated PE4 antibody can be evaluated in larger HCC cohorts and might be exploited for the examination of Plexin C1 expression pattern in other epithelial malignancies.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , ARN Mensajero/metabolismo , Receptores Virales/metabolismo , Anticuerpos Monoclonales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Fenotipo , Análisis de Matrices Tisulares , Regulación hacia Arriba
9.
Cell Oncol (Dordr) ; 41(4): 379-393, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29516288

RESUMEN

BACKGROUND: ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. METHODS: For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. RESULTS: Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. CONCLUSIONS: Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.


Asunto(s)
N-Acetilgalactosaminiltransferasas/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Sitios de Unión , Western Blotting , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo , Humanos , N-Acetilgalactosaminiltransferasas/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Polipéptido N-Acetilgalactosaminiltransferasa
10.
JAMA Netw Open ; 1(6): e183115, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30646224

RESUMEN

Importance: At present, patients with colorectal cancer (CRC) are risk stratified using TNM histologic features. More recently, an association between a mesenchymal phenotype and a high risk of disease recurrence and micrometastases has been recognized. Objective: To investigate the association of the epithelial to mesenchymal transition (EMT)-inducing transcription factor ZEB2 (zinc finger E box-binding homeobox 2), survival outcomes, and the efficacy of ZEB2 as a biomarker when added as refinement to TNM staging after curative intent surgery for CRC. Design, Setting, and Participants: ZEB2 expression was assessed using a previously validated scoring system as part of a prospective, observational, masked diagnostic study from January 1, 2008, to December 31, 2013. Data were prospectively collected and analyzed for association with oncologic outcomes from January 1, 2017, to December 31, 2018. An initial test cohort from an academic university medical center of 126 consecutive patients with CRC and, subsequently, an independent validation cohort of 210 patients were examined. ZEB2 positivity was scored by 2 independent, masked pathologists. External validity was tested using an open access gene expression portal. Nomograms were developed with or without ZEB2. Main Outcomes and Measures: Systemic and local recurrence of CRC. Results: The test cohort consisted of 126 consecutive patients (mean [SD] age, 72.7 [11.7] years; 61 [48.4%] male) and the validation cohort of 210 patients (mean [SD] age, 72.0 [10.6] years; 111 [52.9%] male). A total of 52 tumors (41.3%) in the test cohort and 104 (49.5%) in the validation cohort were scored nuclear ZEB2 positive. Survival analysis by the log-rank test found that ZEB2 expression was associated with a significant reduction in overall survival and disease-free survival in both cohorts. Cox proportional hazards regression analysis highlighted ZEB2 as an independent biomarker of shorter overall survival and disease-free survival. Analysis of node-negative disease (n = 222) identified ZEB2 as an independent biomarker of early recurrence and reduced survival. External validation confirmed these findings. Addition of ZEB2 expression to nomograms composed of conventional TNM risk factors improved the ability to identify patients at high risk of recurrence demonstrated by the improvement in concordance index in both test (0.73 to 0.77) and validation (0.82 to 0.87) cohorts. Conclusions and Relevance: The findings suggest that expression of ZEB2 is associated with poor oncologic outcome and distant recurrence. The study also found that the addition of ZEB2 to existing TNM classification improved the ability to stratify patients for risk of recurrence. The results of this study suggest that addition of ZEB2 expression status to the TNM staging system improves the ability to stratify patients at high risk of recurrence.


Asunto(s)
Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Estadificación de Neoplasias/métodos , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/análisis , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Análisis de Supervivencia , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
11.
J Gastrointest Cancer ; 48(3): 241-245, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28643126

RESUMEN

BACKGROUND: Hepatocellular carcinoma is one of the most common cancers and the second leading cause of cancer-related deaths worldwide. Only a small proportion of patients benefit from curative treatment and the prognosis is very poor for the majority of cases due to late presentation, resistance to chemotherapy and high recurrence rate. In recent years, progress in stem cell biology allowed us to explain that hierarchically organized cancer stem cells (CSCs) drive histological and functional heterogeneity of hematological malignancies and solid tumors. METHODS AND RESULTS: Also referred to as tumor-initiating cells, CSCs have been isolated from both hepatocellular carcinoma (HCC) cell lines and primary tumors by using hepatic progenitor markers. Although there is still no consensus on cancer stem cell phenotype in HCC, single or combined use of CSC markers defines a minor population of tumor cells with the capacity of self-renewing and the ability to recapitulate the original tumor heterogeneity. CONCLUSIONS: This review focuses on the biological features of CSCs and their potential as diagnostic/prognostic tools and therapeutic targets in HCC.

12.
BMC Cancer ; 12: 450, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23033967

RESUMEN

BACKGROUND: One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α). METHODS: Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. RESULTS: We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells, but antagonistically on BT-474 cells. A representative anti-HER2 antibody inhibited Akt and ERK1/2 phosphorylation leading to cyclin D1 accumulation and growth arrest in SK-BR-3 cells, independently from TNF-α. CONCLUSIONS: Novel antibodies against extracellular domain of HER2 may serve as potent anti-cancer bioactive molecules. Cell-dependent synergy and antagonism between anti-HER2 antibodies and TNF-α provide evidence for a complex interplay between HER2 and TNF-α signaling pathways. Such complexity may drastically affect the outcome of HER2-directed therapeutic interventions.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Receptor ErbB-2/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos/inmunología , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Relación Dosis-Respuesta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Epítopos/inmunología , Epítopos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Hibridación Fluorescente in Situ , Células MCF-7 , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
BMC Cancer ; 11: 223, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21645397

RESUMEN

BACKGROUND: Smad interacting protein-1 is a transcription factor that is implicated in transforming growth factor-ß/bone morphogenetic protein signaling and a repressor of E-cadherin and human telomerase reverse transcriptase. It is also involved in epithelial-mesenchymal transition and tumorigenesis. However, genetic and epigenetic alterations of SIP1 have not been fully elucidated in cancers. In this study, we investigated mutations and promoter hypermethylation of the SIP1 gene in human hepatocellular carcinomas. METHODS: SIP1 expression was analyzed in HCC cell lines and primary tumors in comparison to normal and non-tumor liver tissues by using semi-quantitative RT-PCR, quantitative real-time RT-PCR and immunohistochemistry. Mutation and deletion screening of the SIP1 gene were performed by direct sequencing in HCC-derived cells. Restoration of SIP1 expression was sought by treating HCC cell lines with the DNA methyl transferase inhibitor, 5-AzaC, and the histone deacetylase inhibitor, TSA. SIP1 promoter methylation was analyzed by the combined bisulfite restriction analysis assay in in silico-predicted putative promoter and CpG island regions. RESULTS: We found that the expression of SIP1 was completely lost or reduced in five of 14 (36%) HCC cell lines and 17 of 23 (74%) primary HCC tumors. Immunohistochemical analysis confirmed that SIP1 mRNA downregulation was associated with decreased expression of the SIP1 protein in HCC tissues (82.8%). No somatic mutation was observed in SIP1 exons in any of the 14 HCC cell lines. Combined treatment with DNA methyl transferase and histone deacetylase inhibitors synergistically restored SIP1 expression in SIP1-negative cell lines. Analysis of three putative gene regulatory regions revealed tumor-specific methylation in more than half of the HCC cases. CONCLUSIONS: Epigenetic mechanisms contribute significantly to the downregulation of SIP1 expression in HCC. This finding adds a new level of complexity to the role of SIP1 in hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Metilación de ADN , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Neoplasias Hepáticas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Azacitidina/farmacología , Secuencia de Bases , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Metilasas de Modificación del ADN/antagonistas & inhibidores , Análisis Mutacional de ADN , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Proteínas de Homeodominio/genética , Humanos , Ácidos Hidroxámicos/farmacología , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Represoras/genética , Mapeo Restrictivo , Transcripción Genética/efectos de los fármacos , Adulto Joven , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
14.
Exp Mol Pathol ; 89(2): 182-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20515682

RESUMEN

Smad-interacting protein 1 (SIP1, also known as ZEB2) represses the transcription of E-cadherin and mediates epithelial-mesenchymal transition in development and tumor metastasis. Due to the lack of human SIP1-specific antibodies, its expression in human tumor tissues has not been studied in detail by immunohistochemistry. Hence, we generated two anti-SIP1 monoclonal antibodies, clones 1C6 and 6E5, with IgG1 and IgG2a isotypes, respectively. The specificity of these antibodies was shown by Western blotting studies using siRNA mediated downregulation of SIP1 and ZEB1 in a human osteosarcoma cell line. In the same context, we also compared them with 5 commercially available SIP1 antibodies. Antibody specificity was further verified in an inducible cell line system by immunofluorescence. By using both antibodies, we evaluated the tissue expression of SIP1 in paraffin-embedded tissue microarrays consisting of 22 normal and 101 tumoral tissues of kidney, colon, stomach, lung, esophagus, uterus, rectum, breast and liver. Interestingly, SIP1 predominantly displayed a cytoplasmic expression, while the nuclear localization of SIP1 was observed in only 6 cases. Strong expression of SIP1 was found in distal tubules of kidney, glandular epithelial cells of stomach and hepatocytes, implicating a co-expression of SIP1 and E-cadherin. Squamous epithelium of the esophagus and surface epithelium of colon and rectum were stained with moderate to weak intensity. Normal uterus, breast and lung tissues remained completely negative. By comparison with their normal tissues, we observed SIP1 overexpression in cancers of the kidney, breast, lung and uterus. However, SIP1 expression was found to be downregulated in tumors from colon, rectum, esophagus, liver and stomach tissues. Finally we did nuclear/cytoplasmic fractionation in 3 carcinoma cell lines and detected SIP1 in both fractions, nucleus being the dominant one. To our best knowledge, this is the first comprehensive immunohistochemical study of the expression of SIP1 in a series of human cancers. Our finding that SIP1 is not exclusively localized to nucleus suggests that the subcellular localization of SIP1 is regulated in normal and tumor tissues. These novel monoclonal antibodies may help elucidate the role of SIP1 in tumor development.


Asunto(s)
Anticuerpos Monoclonales , Citoplasma/metabolismo , Proteínas de Homeodominio/análisis , Inmunohistoquímica , Neoplasias/metabolismo , Proteínas Represoras/análisis , Animales , Especificidad de Anticuerpos/inmunología , Cadherinas/genética , Cadherinas/inmunología , Cadherinas/metabolismo , Línea Celular , Citoplasma/inmunología , Epitelio/inmunología , Epitelio/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/inmunología , Proteínas Represoras/inmunología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
15.
Proc Natl Acad Sci U S A ; 106(35): 14884-9, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706487

RESUMEN

The epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Two ZEB family members, ZEB1 and ZEB2(SIP1), inhibit transcription of the E-cadherin gene and induce EMT in vitro. However, their relevance to human cancer is insufficiently studied. Here, we performed a comparative study of SIP1 and ZEB1 proteins in cancer cell lines and in one form of human malignancy, carcinoma of the bladder. Whereas ZEB1 protein was expressed in all E-cadherin-negative carcinoma cell lines, being in part responsible for the high motility of bladder cancer cells, SIP1 was hardly ever detectable in carcinoma cells in culture. However, SIP1 represented an independent factor of poor prognosis (P = 0.005) in a series of bladder cancer specimens obtained from patients treated with radiotherapy. In contrast, ZEB1 was rarely expressed in tumor tissues; and E-cadherin status did not correlate with the patients' survival. SIP1 protected cells from UV- and cisplatin-induced apoptosis in vitro but had no effect on the level of DNA damage. The anti-apoptotic effect of SIP1 was independent of either cell cycle arrest or loss of cell-cell adhesion and was associated with reduced phosphorylation of ATM/ATR targets in UV-treated cells. The prognostic value of SIP1 and its role in DNA damage response establish a link between genetic instability and metastasis and suggest a potential importance for this protein as a therapeutic target. In addition, we conclude that the nature of an EMT pathway rather than the deregulation of E-cadherin per se is critical for the progression of the disease and patients' survival.


Asunto(s)
Apoptosis , Daño del ADN , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Invasividad Neoplásica , Fenotipo , Pronóstico , Proteínas Represoras/genética , Tasa de Supervivencia , Factores de Transcripción/metabolismo , Resultado del Tratamiento , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/radioterapia , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
16.
BMC Cancer ; 8: 392, 2008 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-19114000

RESUMEN

BACKGROUND: SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. METHODS: Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. RESULTS: Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. CONCLUSION: The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of ROBO1, ROBO4 and SLIT2 for prediction of tumor stage and differentiation status.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Análisis de Varianza , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Receptores Inmunológicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Proteínas Roundabout
17.
New Microbiol ; 30(2): 167-71, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17619262

RESUMEN

Pseudomonas aeruginosa infections are particularly common in people with cystic fibrosis and despite regular treatment with antibiotics, lung damage due to chronic infection with P. aeruginosa remains the major cause of death in those patients. In order to initiate an infection, P. aeruginosa needs contact with the respiratory epithelial surface and by means of its adhesins i.e., fimbria, hemagglutinins,etc., it recognizes and adheres to the corresponding epithelial receptors. We treated P. aeruginosa strains isolated from sputum of cystic fibrosis patients with several glycolipids such as sulfatide, sulfated ganglioside mixture (GM1a, GD1b, GT1b), asialo-GM1 and galactocerebrosides to determine their effect on attachment with pharyngeal epithelial cells. Sulfated ganglioside mixture and sulfatide inhibited the attachment of P. aeruginosa significantly, whereas asialo-GM1, Gal-Cer and sodium sulfite had no effect on attachment inhibition. This finding suggests that sulfated glycoconjugates found in the extracellular matrix, in mucus and on the surface of epithelial cells of human trachea and lung mediates attachment of P. aeruginosa.


Asunto(s)
Adhesión Bacteriana/fisiología , Células Epiteliales/química , Células Epiteliales/microbiología , Faringe/microbiología , Pseudomonas aeruginosa/patogenicidad , Sulfoglicoesfingolípidos/metabolismo , Células Cultivadas , Humanos , Faringe/citología
18.
Hybridoma (Larchmt) ; 26(2): 55-61, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17451351

RESUMEN

Early and differential diagnosis of hepatocellular carcinoma (HCC) requires sensitive and specific tissue and serum markers. On the other hand, proteins involved in tumorigenesis are extensively modulated on exposure to apoptotic stimuli, including ultraviolet (UVC) irradiation. Hence, we generated monoclonal antibodies by using UVC-irradiated apoptotic cells of an HCC cell line, HUH7, aiming to explore proteins differentially expressed in tumors and apoptosis. We obtained 18 hybridoma clones recognizing protein targets in apoptotic HUH7 cells, and clone 6D5 was chosen for characterization studies because of its strong reactivity in cell-ELISA assay. Subtype of the antibody was IgG3 (kappa). Targets of 6D5 antibody were found to be abundantly expressed in all HCC cell lines except FLC4, which resembles normal hepatocytes. We also observed the secretion of 6D5 ligands by some of the HCC cell lines. Moreover, cellular proteins recognized by the antibody displayed a late upregulation in UVC-induced apoptotic cells. We concluded that 6D5 target proteins are modulated in liver tumorigenesis and apoptotic processes. We therefore propose the validation of our antibody in tissue and serum samples of HCC patients to assess its potential use for the early diagnosis of HCC and to understand the role of 6D5 ligands in liver carcinogenesis.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Antígenos de Neoplasias/inmunología , Apoptosis , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Carcinoma Hepatocelular/diagnóstico , Línea Celular Tumoral , Humanos , Hibridomas , Inmunización , Neoplasias Hepáticas/diagnóstico , Ratones , Ratones Endogámicos BALB C , Rayos Ultravioleta
19.
Proc Natl Acad Sci U S A ; 103(7): 2178-83, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16461895

RESUMEN

Tumor cells have the capacity to proliferate indefinitely that is qualified as replicative immortality. This ability contrasts with the intrinsic control of the number of cell divisions in human somatic tissues by a mechanism called replicative senescence. Replicative immortality is acquired by inactivation of p53 and p16INK4a genes and reactivation of hTERT gene expression. It is unknown whether the cancer cell replicative immortality is reversible. Here, we show the spontaneous induction of replicative senescence in p53-and p16INK4a-deficient hepatocellular carcinoma cells. This phenomenon is characterized with hTERT repression, telomere shortening, senescence arrest, and tumor suppression. SIP1 gene (ZFHX1B) is partly responsible for replicative senescence, because short hairpin RNA-mediated SIP1 inactivation released hTERT repression and rescued clonal hepatocellular carcinoma cells from senescence arrest.


Asunto(s)
Carcinoma Hepatocelular/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Proteínas de Homeodominio/genética , Neoplasias Hepáticas/genética , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/deficiencia , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Genes Relacionados con las Neoplasias , Humanos , Neoplasias Hepáticas/patología , Ratones , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...