Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Imaging ; 2022: 3667417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072652

RESUMEN

Purpose: [18F]F-AraG is a radiolabeled nucleoside analog that shows relative specificity for activated T cells. The aim of this study was to investigate the biodistribution of [18F]F-AraG in healthy volunteers and assess the preliminary safety and radiation dosimetry. Methods: Six healthy subjects (three female and three male) between the ages of 24 and 60 participated in the study. Each subject received a bolus venous injection of [18F]F-AraG (dose range: 244.2-329.3 MBq) prior to four consecutive PET/MR whole-body scans. Blood samples were collected at regular intervals and vital signs monitored before and after tracer administration. Regions of interest were delineated for multiple organs, and the area under the time-activity curves was calculated for each organ and used to derive time-integrated activity coefficient (TIAC). TIACs were input for absorbed dose and effective dose calculations using OLINDA. Results: PET/MR examination was well tolerated, and no adverse effects to the administration of [18F]F-AraG were noted by the study participants. The biodistribution was generally reflective of the expression and activity profiles of the enzymes involved in [18F]F-AraG's cellular accumulation, mitochondrial kinase dGK, and SAMHD1. The highest uptake was observed in the kidneys and liver, while the brain, lung, bone marrow, and muscle showed low tracer uptake. The estimated effective dose for [18F]F-AraG was 0.0162 mSv/MBq (0.0167 mSv/MBq for females and 0.0157 mSv/MBq for males). Conclusion: Biodistribution of [18F]F-AraG in healthy volunteers was consistent with its association with mitochondrial metabolism. PET/MR [18F]F-AraG imaging was well tolerated, with a radiation dosimetry profile similar to other commonly used [18F]-labeled tracers. [18F]F-AraG's connection with mitochondrial biogenesis and favorable biodistribution characteristics make it an attractive tracer with a variety of potential applications.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Distribución Tisular , Adulto Joven
2.
Cancer Res ; 79(13): 3455-3465, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31064845

RESUMEN

Compelling evidence points to immune cell infiltration as a critical component of successful immunotherapy. However, there are currently no clinically available, noninvasive methods capable of evaluating immune contexture prior to or during immunotherapy. In this study, we evaluate a T-cell-specific PET agent, [18F]F-AraG, as an imaging biomarker predictive of response to checkpoint inhibitor therapy. We determined the specificity of the tracer for activated T cells in vitro and in a virally induced model of rhabdomyosarcoma. Of all immune cells tested, activated human CD8+ effector cells showed the highest accumulation of [18F]F-AraG. Isolation of lymphocytes from the rhabdomyosarcoma tumors showed that more than 80% of the intratumoral signal came from accumulation of [18F]F-AraG in immune cells, primarily CD8+ and CD4+. Longitudinal monitoring of MC38 tumor-bearing mice undergoing anti-PD-1 treatment revealed differences in signal between PD-1 and isotype antibody-treated mice early into treatment. The differences in [18F]F-AraG signal were also apparent between responders and nonresponders to anti-PD-1 therapy. Importantly, we found that the signal in the tumor-draining lymph nodes provides key information about response to anti-PD-1 therapy. Overall, [18F]F-AraG has potential to serve as a much needed immunomonitoring clinical tool for timely evaluation of immunotherapy. SIGNIFICANCE: These findings reveal differences in T-cell activation between responders and nonresponders early into anti-PD-1 treatment, which may impact many facets of immuno-oncology, including patient selection, management, and development of novel combinatorial approaches.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/inmunología , Procesamiento de Imagen Asistido por Computador/métodos , Inmunoterapia , Activación de Linfocitos/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Rabdomiosarcoma/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Células Tumorales Cultivadas
3.
Cancer Res ; 77(11): 2893-2902, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572504

RESUMEN

A major barrier to successful use of allogeneic hematopoietic cell transplantation is acute graft-versus-host disease (aGVHD), a devastating condition that arises when donor T cells attack host tissues. With current technologies, aGVHD diagnosis is typically made after end-organ injury and often requires invasive tests and tissue biopsies. This affects patient prognosis as treatments are dramatically less effective at late disease stages. Here, we show that a novel PET radiotracer, 2'-deoxy-2'-[18F]fluoro-9-ß-D-arabinofuranosylguanine ([18F]F-AraG), targeted toward two salvage kinase pathways preferentially accumulates in activated primary T cells. [18F]F-AraG PET imaging of a murine aGVHD model enabled visualization of secondary lymphoid organs harboring activated donor T cells prior to clinical symptoms. Tracer biodistribution in healthy humans showed favorable kinetics. This new PET strategy has great potential for early aGVHD diagnosis, enabling timely treatments and improved patient outcomes. [18F]F-AraG may be useful for imaging activated T cells in various biomedical applications. Cancer Res; 77(11); 2893-902. ©2017 AACR.


Asunto(s)
Enfermedad Injerto contra Huésped/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Tomografía de Emisión de Positrones/métodos , Linfocitos T/inmunología , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Enfermedad Aguda , Adulto , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Linfocitos T/patología , Adulto Joven
4.
Sci Transl Med ; 9(373)2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100832

RESUMEN

High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8+ cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) and interleukin-13 (IL-13) zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it would be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [18F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Genes Reporteros , Glioma/diagnóstico por imagen , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/citología , Anciano , Neoplasias Encefálicas/terapia , Femenino , Expresión Génica , Terapia Genética/métodos , Glioma/terapia , Humanos , Interleucina-13/metabolismo , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones , Estudios Prospectivos , Timidina Quinasa/metabolismo
5.
Radiology ; 280(3): 826-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27332865

RESUMEN

Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Genes Reporteros , Corazón/diagnóstico por imagen , Trasplante de Células Madre Mesenquimatosas , Imagen Molecular/métodos , Imagen Multimodal/métodos , Animales , Radioisótopos de Flúor , Guanina/análogos & derivados , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Porcinos
6.
Radiology ; 280(3): 815-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27308957

RESUMEN

Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Genes Reporteros , Trasplante de Células Madre Mesenquimatosas/métodos , Imagen Molecular , Imagen Multimodal , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Animales , Femenino , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones , Transfección
7.
Cureus ; 8(4): e565, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27186447

RESUMEN

The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine.

8.
Proc Natl Acad Sci U S A ; 113(15): 4027-32, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035974

RESUMEN

Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.


Asunto(s)
Nucleótidos de Adenina/química , Arabinonucleósidos/química , Biomarcadores de Tumor/química , Desoxicitidina Quinasa/análisis , Desoxicitidina Quinasa/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Clofarabina , Medios de Contraste/química , Desoxicitidina Quinasa/antagonistas & inhibidores , Humanos , Leucemia/enzimología , Ratones , Neoplasias/tratamiento farmacológico , Profármacos/química , Ratas
9.
Stem Cells Int ; 2015: 258313, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346753
10.
Mol Imaging Biol ; 16(6): 865-76, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24845530

RESUMEN

PURPOSE: Human pluripotency gene networks (PGNs), controlled in part by Oct4, are central to understanding pluripotent stem cells, but current fluorescent reporter genes (RGs) preclude noninvasive assessment of Oct4 dynamics in living subjects. PROCEDURES: To assess Oc4 activity noninvasively, we engineered a mouse embryonic stem cell line which encoded both a pOct4-hrluc (humanized renilla luciferase) reporter and a pUbi-hfluc2-gfp (humanized firefly luciferase 2 fused to green fluorescent protein) reporter. RESULTS: In cell culture, pOct4-hRLUC activity demonstrated a peak at 48 h (day 2) and significant downregulation by 72 h (day 3) (p=0.0001). Studies in living subjects demonstrated significant downregulation in pOct4-hRLUC activity between 12 and 144 h (p = 0.001) and between 12 and 168 h (p = 0.0003). pOct4-hRLUC signal dynamics after implantation was complex, characterized by transient upregulation after initial downregulation in all experiments (n = 10, p = 0.01). As expected, cell culture differentiation of the engineered mouse embryonic stem cell line demonstrated activation of mesendodermal, mesodermal, endodermal, and ectodermal master regulators of differentiation, indicating potency to form all three germ layers. CONCLUSIONS: We conclude that the Oct4-hrluc RG system enables noninvasive Oct4 imaging in cell culture and in living subjects.


Asunto(s)
Células Madre Embrionarias/fisiología , Imagen Molecular/métodos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias/citología , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Microscopía Fluorescente , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes , Ratas
11.
Proc Natl Acad Sci U S A ; 109(37): E2476-85, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22895790

RESUMEN

Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and ß) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/ß)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (HTS) and monitoring the efficacy of Hsp90 inhibitors in cell culture and live mice. HTS of a 30,176 small-molecule chemical library in cell culture identified a compound, N-(5-methylisoxazol-3-yl)-2-[4-(thiophen-2-yl)-6-(trifluoromethyl)pyrimidin-2-ylthio]acetamide (CP9), that binds to Hsp90(α/ß) and displays characteristics of Hsp90 inhibitors, i.e., degradation of Hsp90 client proteins and inhibition of cell proliferation, glucose metabolism, and thymidine kinase activity, in multiple cancer cell lines. The efficacy of CP9 in disrupting Hsp90(α/ß)/p23 interactions and cell proliferation in tumor xenografts was evaluated by non-invasive, repetitive Renilla luciferase and Firefly luciferase imaging, respectively. At 38 h posttreatment (80 mg/kg × 3, i.p.), CP9 led to selective disruption of Hsp90α/p23 as compared with Hsp90ß/p23 interactions. Small-animal PET/CT in the same cohort of mice showed that CP9 treatment (43 h) led to a 40% decrease in (18)F-fluorodeoxyglucose uptake in tumors relative to carrier control-treated mice. However, CP9 did not lead to significant degradation of Hsp90 client proteins in tumors. We performed a structural activity relationship study with 62 analogs of CP9 and identified A17 as the lead compound that outperformed CP9 in inhibiting Hsp90(α/ß)/p23 interactions in cell culture. Our efforts demonstrated the power of coupling of HTS with multimodality molecular imaging and led to identification of Hsp90 inhibitors.


Asunto(s)
Acetamidas/farmacología , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lactamas Macrocíclicas/farmacología , Neoplasias/metabolismo , Tioacetamida/análogos & derivados , Tiofenos/farmacología , Animales , Western Blotting , Línea Celular Tumoral , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Humanos , Imidazoles , Inmunoprecipitación , Plomo/farmacología , Luciferasas de Luciérnaga , Luciferasas de Renilla , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones , Prostaglandina-E Sintasas , Pliegue de Proteína , Isoformas de Proteínas/metabolismo , Pirazinas , Bibliotecas de Moléculas Pequeñas , Tioacetamida/farmacología , Tomografía Computarizada por Rayos X , Tritio
12.
Theranostics ; 2(4): 374-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509201

RESUMEN

Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.

13.
J Biol Chem ; 287(1): 446-454, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22074768

RESUMEN

Positron emission tomography (PET) reporter gene imaging can be used to non-invasively monitor cell-based therapies. Therapeutic cells engineered to express a PET reporter gene (PRG) specifically accumulate a PET reporter probe (PRP) and can be detected by PET imaging. Expanding the utility of this technology requires the development of new non-immunogenic PRGs. Here we describe a new PRG-PRP system that employs, as the PRG, a mutated form of human thymidine kinase 2 (TK2) and 2'-deoxy-2'-18F-5-methyl-1-ß-L-arabinofuranosyluracil (L-18F-FMAU) as the PRP. We identified L-18F-FMAU as a candidate PRP and determined its biodistribution in mice and humans. Using structure-guided enzyme engineering, we generated a TK2 double mutant (TK2-N93D/L109F) that efficiently phosphorylates L-18F-FMAU. The N93D/L109F TK2 mutant has lower activity for the endogenous nucleosides thymidine and deoxycytidine than wild type TK2, and its ectopic expression in therapeutic cells is not expected to alter nucleotide metabolism. Imaging studies in mice indicate that the sensitivity of the new human TK2-N93D/L109F PRG is comparable with that of a widely used PRG based on the herpes simplex virus 1 thymidine kinase. These findings suggest that the TK2-N93D/L109F/L-18F-FMAU PRG-PRP system warrants further evaluation in preclinical and clinical applications of cell-based therapies.


Asunto(s)
Genes Reporteros/genética , Tomografía de Emisión de Positrones/métodos , Ingeniería de Proteínas/métodos , Timidina Quinasa/química , Timidina Quinasa/genética , Timidina/análogos & derivados , Timidina/metabolismo , Adulto , Animales , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/química , Arabinofuranosil Uracilo/metabolismo , Arabinofuranosil Uracilo/farmacocinética , Femenino , Radioisótopos de Flúor , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Guanina/farmacocinética , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Fosforilación , Conformación Proteica , Timidina/farmacocinética , Timidina Quinasa/metabolismo
14.
Mol Imaging Biol ; 13(5): 812-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20838911

RESUMEN

PURPOSE: 9-(ß-D-Arabinofuranosyl)guanine (AraG) is a guanosine analog that has a proven efficacy in the treatment of T-cell lymphoblastic disease. To test the possibility of using a radiofluorinated AraG as an imaging agent, we have synthesized 2'-deoxy-2'-[(18)F]fluoro-9-ß-D-arabinofuranosylguanine ([(18)F]F-AraG) and investigated its uptake in T cells. PROCEDURE: We have synthesized [(18)F]F-AraG via a direct fluorination of 2-N-acetyl-6-O-((4-nitrophenyl)ethyl)-9-(3',5'-di-O-trityl-2'-O-trifyl-ß-D-ribofuranosyl)guanine with [(18)F]KF/K.2.2.2 in DMSO at 85°C for 45 min. [(18)F]F-AraG uptake in both a CCRF-CEM leukemia cell line (unactivated) and activated primary thymocytes was evaluated. RESULTS: We have successfully prepared [(18)F]F-AraG in 7-10% radiochemical yield (decay corrected) with a specific activity of 0.8-1.3 Ci/µmol. Preliminary cell uptake experiments showed that both a CCRF-CEM leukemia cell line and activated primary thymocytes take up the [(18)F]F-AraG. CONCLUSION: For the first time to the best of our knowledge, [(18)F]F-AraG has been successfully synthesized by direct fluorination of an appropriate precursor of a guanosine nucleoside. This approach maybe also useful for the synthesis of other important positron emission tomography (PET) probes such as [(18)F]FEAU, [(18)F]FMAU, and [(18)F]FBAU which are currently synthesized by multiple steps and involve lengthy purification. The cell uptake studies support future studies to investigate the use of [(18)F]F-AraG as a PET imaging agent of T cells.


Asunto(s)
Arabinonucleósidos/síntesis química , Activación de Linfocitos , Tomografía de Emisión de Positrones , Linfocitos T/inmunología , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
15.
Eur J Nucl Med Mol Imaging ; 38(4): 722-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21125268

RESUMEN

PURPOSE: An (18)F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[(18)F]FPP(RGD)(2)} has been used to image tumor α(v)ß(3) integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin α(v)ß(3)-targeted PET probe, [(18)F]FPP(RGD)(2,) using small animal PET. METHODS: Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [(18)F]FPP(RGD)(2) (1.9-3.8 MBq, 50-100 µCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. RESULTS: The coefficient of variation (mean±SD) for %ID(mean)/g and %ID(max)/g values between [(18)F]FPP(RGD)(2) small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %ID(mean)/g and %ID(max)/g values between scans were -0.025 ± 0.067 and -0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of α(ν)ß(3) integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not contribute to the variability of the scans; however, consistent scanning parameters were necessary to ensure accurate studies, in particular, noting tumor volume, as well as making uniform: the time of imaging after injection and the ROI size. Reanalysis of ROI placement displayed variability for %ID(mean)/g of 6.6 ± 3.9% and 0.28 ± 0.12% for %ID(max)/g. CONCLUSION: [(18)F]FPP(RGD)(2) small animal PET mouse tumor xenograft studies are reproducible with relatively low variability.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Oligopéptidos/metabolismo , Polietilenglicoles/metabolismo , Animales , Transporte Biológico , Neoplasias del Colon/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Células HCT116 , Humanos , Inyecciones , Ratones , Oligopéptidos/administración & dosificación , Polietilenglicoles/administración & dosificación , Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados , Cola (estructura animal)/irrigación sanguínea , Carga Tumoral , Venas
16.
Blood ; 113(26): 6638-47, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19363220

RESUMEN

Because of their potent immunoregulatory capacity, dendritic cells (DCs) have been exploited as therapeutic tools to boost immune responses against tumors or pathogens, or dampen autoimmune or allergic responses. Murine bone marrow-derived DCs (BM-DCs) are the closest known equivalent of the blood monocyte-derived DCs that have been used for human therapy. Current imaging methods have proven unable to properly address the migration of injected DCs to small and deep tissues in mice and humans. This study presents the first extensive analysis of BM-DC homing to lymph nodes (and other selected tissues) after intravenous and intraperitoneal inoculation. After intravenous delivery, DCs accumulated in the spleen, and preferentially in the pancreatic and lung-draining lymph nodes. In contrast, DCs injected intraperitoneally were found predominantly in peritoneal lymph nodes (pancreatic in particular), and in omentum-associated lymphoid tissue. This uneven distribution of BM-DCs, independent of the mouse strain and also observed within pancreatic lymph nodes, resulted in the uneven induction of immune response in different lymphoid tissues. These data have important implications for the design of systemic cellular therapy with DCs, and in particular underlie a previously unsuspected potential for specific treatment of diseases such as autoimmune diabetes and pancreatic cancer.


Asunto(s)
Células Dendríticas/citología , Tejido Linfoide/citología , Animales , Células de la Médula Ósea/citología , Movimiento Celular/fisiología , Células Dendríticas/trasplante , Femenino , Genes Reporteros , Inmunoterapia Adoptiva , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Luciferasas de Luciérnaga/análisis , Luciferasas de Luciérnaga/genética , Pulmón , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Transgénicos , Epiplón , Especificidad de Órganos , Páncreas , Bazo
17.
J Nucl Med ; 50(4): 501-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19289439

RESUMEN

UNLABELLED: (18)F-FDG PET/CT is used for detecting cancer and monitoring cancer response to therapy. However, because of the variable rates of glucose metabolism, not all cancers are identified reliably. Sodium (18)F was previously used for bone imaging and can be used as a PET/CT skeletal tracer. The combined administration of (18)F and (18)F-FDG in a single PET/CT study for cancer detection has not been reported to date. METHODS: This is a prospective pilot study (November 2007-November 2008) of 14 patients with proven malignancy (6 sarcoma, 3 prostate cancer, 2 breast cancer, 1 colon cancer, 1 lung cancer, and 1 malignant paraganglioma) who underwent separate (18)F PET/CT and (18)F-FDG PET/CT and combined (18)F/(18)F-FDG PET/CT scans for the evaluation of malignancy (a total of 3 scans each). There were 11 men and 3 women (age range, 19-75 y; average, 50.4 y). RESULTS: Interpretation of the combined (18)F/(18)F-FDG PET/CT scans compared favorably with that of the (18)F-FDG PET/CT (no lesions missed) and the (18)F PET/CT scans (only 1 skull lesion seen on an (18)F PET/CT scan was missed on the corresponding combined scan). Through image processing, the combined (18)F/(18)F-FDG scan yielded results for bone radiotracer uptake comparable to those of the (18)F PET/CT scan performed separately. CONCLUSION: Our pilot-phase prospective trial demonstrates that the combined (18)F/(18)F-FDG administration followed by a single PET/CT scan is feasible for cancer detection. This combined method opens the possibility for improved patient care and reduction in health care costs.


Asunto(s)
Fluorodesoxiglucosa F18 , Aumento de la Imagen/métodos , Neoplasias/diagnóstico , Tomografía de Emisión de Positrones/métodos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proyectos Piloto , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
18.
Bioconjug Chem ; 20(3): 432-6, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19226160

RESUMEN

We have used the well-accepted and easily available 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG) positron emission tomography (PET) tracer as a prosthetic group for synthesis of (18)F-labeled peptides. We herein report the synthesis of [(18)F]FDG-RGD ((18)F labeled linear RGD) and [(18)F]FDG-cyclo(RGD(D)YK) ((18)F labeled cyclic RGD) as examples of the use of [(18)F]FDG. We have successfully prepared [(18)F]FDG-RGD and [(18)F]FDG-cyclo(RGD(D)YK) in 27.5% and 41% radiochemical yields (decay corrected) respectively. The receptor binding affinity study of FDG-cyclo(RGD(D)YK) for integrin alpha(v)beta(3), using alpha(v)beta(3) positive U87MG cells confirmed a competitive displacement with (125)I-echistatin as a radioligand. The IC(50) value for FDG-cyclo(RGD(D)YK) was determined to be 0.67 +/- 0.19 muM. High-contrast small animal PET images with relatively moderate tumor uptake were observed for [(18)F]FDG-RGD and [(18)F]FDG-cyclo(RGD(D)YK) as PET probes in xenograft models expressing alpha(v)beta(3) integrin. In conclusion, we have successfully used [(18)F]FDG as a prosthetic group to prepare (18)F]FDG-RGD and [(18)F]FDG-cyclic[RGD(D)YK] based on a simple one-step radiosynthesis. The one-step radiosynthesis methodology consists of chemoselective oxime formation between an aminooxy-functionalized peptide and [(18)F]FDG. The results have implications for radiolabeling of other macromolecules and would lead to a very simple strategy for routine preclinical and clinical use.


Asunto(s)
Fluorodesoxiglucosa F18/química , Neoplasias/diagnóstico , Oligopéptidos/química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Fluorodesoxiglucosa F18/síntesis química , Fluorodesoxiglucosa F18/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Ratones , Ratones Desnudos , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/metabolismo
19.
Nat Clin Pract Oncol ; 6(1): 53-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19015650

RESUMEN

BACKGROUND: A 57-year-old man had been diagnosed with grade IV glioblastoma multiforme and was enrolled in a trial of adoptive cellular immunotherapy. The trial involved infusion of ex vivo expanded autologous cytolytic CD8+ T cells (CTLs), genetically engineered to express the interleukin 13 zetakine gene (which encodes a receptor protein that targets these T cells to tumor cells) and the herpes simplex virus 1 thymidine kinase (HSV1 tk) suicide gene, and PET imaging reporter gene. INVESTIGATIONS: MRI, whole-body and brain PET scan with (18)F-radiolabelled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ((18)F-FHBG) to detect CTLs that express HSV1 tk, and safety monitoring after injection of (18)F-FHBG. DIAGNOSIS: MRI detected grade III-IV glioblastoma multiforme plus two tumors recurrences that developed after resection of the initial tumor. MANAGEMENT: Surgical resection of primary glioblastoma tumor, enrollment in CTL therapy trial, reresection of glioma recurrences, infusion of approximately 1 x 10(9) CTLs into the site of tumor reresection, and (18)F-FHBG PET scan to detect infused CTLs.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Terapia Genética , Glioblastoma/diagnóstico por imagen , Guanina/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Linfocitos T Citotóxicos/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Radioisótopos de Flúor/administración & dosificación , Glioblastoma/inmunología , Glioblastoma/terapia , Guanina/administración & dosificación , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Linfocitos T Citotóxicos/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
20.
Methods Mol Biol ; 433: 177-202, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18679624

RESUMEN

Noninvasive imaging of molecular-genetic and cellular processes is an effective way to determine the location(s), magnitude, and time variation of action of gene products used for many therapeutic strategies. Lentiviral vectors provide effective means for the delivery, integration, and expression of transgenes in cultured mammalian cells as well as in vivo. Therefore, the combination of lentiviral vector-mediated therapeutic and imaging-targeted reporter gene delivery to various target organs holds promise for the future treatment of diseases. In this chapter, we provide protocols for developing lentiviral vectors that can be utilized for noninvasive monitoring/imaging of reporter gene expression. We have described the procedures to perform cellular assays and animal imaging based on positron emission tomography (PET), optical bioluminescence, and fluorescence reporter genes. The protocols described here are standardized for mouse models, which can also be adapted for other small animal models (e.g., rats).


Asunto(s)
Vectores Genéticos/genética , Imagenología Tridimensional/métodos , Lentivirus/genética , Animales , Línea Celular , Genes Reporteros , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Lentivirus/fisiología , Ratones , Tomografía de Emisión de Positrones , Coloración y Etiquetado , Virión , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...