Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37759649

RESUMEN

Living bodies comprise approximately 55-75% water to maintain homeostasis. However, little is known about the comprehensive differences in in vivo water molecule dynamics (water structure dynamics; WSD) between physiological and pathophysiological statuses. Here, we examined the WSD of ex vivo tumor tissues and organs from tumor-bearing mice with engrafted mouse malignant melanoma cells (B16-F10) in the right flanks to compare with those in healthy mice, using time domain reflectometry of dielectric spectroscopy at days 9, 11, and 14 after engrafting. The relaxation parameters of relaxation time (τ), relaxation time distribution parameter (ß), and relaxation strength (∆ε) were measured on tumor tissues and lung, liver, kidney, and skin tissues. Immediately afterward, the water contents (%) in the tumor and the other organs were calculated by measuring their weights before and after freeze-drying. Each parameter of the tumor was compared to that of pooled values of other organs in tumor-bearing (TO) and healthy mice (HO). The tumor water content temporarily increased compared to that of HO at day 11; the tumor volume was also prone to increase. In contrast, tumor tissues exhibited significantly higher values of ß close to 1 of ultrapure water and ∆ε compared to TO and HO at all times. Moreover, ß in the viscera of TO was prone to increase compared to that of HO with significantly higher levels at day 11. Conclusively, tumor-bearing mice exhibited systemically aberrant WSD, unlike healthy mice. Thus, dielectric spectroscopy in terms of WSD may provide novel pathophysiological perspectives in tumor-bearing living bodies.

2.
Phys Chem Chem Phys ; 25(33): 22223-22231, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37566434

RESUMEN

A broadband dielectric spectroscopy study was conducted on a partially crystallized 10 wt% poly(N-isopropylacrylamide) [PNIPAM] microgel aqueous suspension to investigate the dielectric relaxation of ice in microgel suspensions. The measurements covered a frequency range of 10 mHz to 10 MHz and at temperatures ranging from 123 K to 273 K. Two distinct relaxation processes were observed at specific frequencies below the melting temperature. One is associated with the combination of the local chain motion of PNIPAM and interfacial polarization in the uncrystallized phase, while another is associated with ice. To understand the temperature-dependent behaviour of the ice relaxation process, the relaxation time of ice was compared with those observed in other frozen polymer water mixtures, including gelatin, poly-vinylpyrrolidone (PVP), and bovine serum albumin (BSA). For concentrations ≥ 10 wt%, the temperature dependence of the relaxation time of ice was found to be independent. Therefore, the study primarily focused on the 10 wt% data for easier comprehension of the ice relaxation process. It was found that the microgel and globular protein BSA had no significant effect on ice crystallization, while gelatin slowed down the crystallization process, and PVP accelerated it. To discuss the mechanism of the dielectric relaxation of ice, the trap-controlled proton transport model developed by Khamzin et al. [Chem. Phys., 2021, 541, 111040.] was employed. The model was used to discuss the dynamic heterogeneity of ice observed in this investigation, distinguishing it from the spatial heterogeneity of ice commonly discussed.

3.
Gels ; 9(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504385

RESUMEN

So far, it has been difficult to directly compare diverse characteristic gelation mechanisms over different length and time scales. This paper presents a universal water structure analysis of several gels with different structures and gelation mechanisms including polymer gels, supramolecular gels composed of surfactant micelles, and cement gels. The spatial distribution of water molecules was analyzed at molecular level from a diagram of the relaxation times and their distribution parameters (τ-ß diagrams) with our database of the 10 GHz process for a variety of aqueous systems. Polymer gels with volume phase transition showed a small decrease in the fractal dimension of the hydrogen bond network (HBN) with gelation. In supramolecular gels with rod micelle precursor with amphipathic molecules, both the elongation of the micelles and their cross-linking caused a reduction in the fractal dimension. Such a reduction was also found in cement gels. These results suggest that the HBN inevitably breaks at each length scale with relative increase in steric hindrance due to cross-linking, resulting in the fragmentation of collective structures of water molecules. The universal analysis using τ-ß diagrams presented here has broad applicability as a method to characterize diverse gel structures and evaluate gelation processes.

4.
Gels ; 9(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233000

RESUMEN

There are various types of gel materials used in a wide range of fields, and their gelation mechanisms are extremely diverse. Furthermore, in the case of hydrogels, there exist some difficulties in understanding complicated molecular mechanisms especially with water molecules interacting through hydrogen bonding as solvents. In the present work, the molecular mechanism of the structural formation of fibrous super-molecular gel by the low molecular weight gelator, N-oleyl lactobionamide/water mixture was elucidated using the broadband dielectric spectroscopy (BDS) method. The dynamic behaviors observed for the solute and water molecules indicated hierarchical structure formation processes in various time scales. The relaxation curves obtained at various temperatures in the cooling and heating processes showed relaxation processes respectively reflecting the dynamic behaviors of water molecules in the 10 GHz frequency region, solute molecules interacting with water in MHz region, and ion-reflecting structures of the sample and electrode in kHz region. These relaxation processes, characterized by the relaxation parameters, showed remarkable changes around the sol-gel transition temperature, 37.8 °C, determined by the falling ball method and over the temperature range, around 53 °C. The latter change suggested a structure formation of rod micelles appearing as precursors before cross-linking into the three-dimensional network of the supramolecular gels. These results clearly demonstrate how effective relaxation parameter analysis is for understanding the gelation mechanism in detail.

5.
Gels ; 10(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38247743

RESUMEN

High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol-gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon's theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials.

6.
Materials (Basel) ; 13(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340125

RESUMEN

This paper presents dielectric measurements of talc, glass beads, and their mixtures under different moisture and salinity levels. The measurements were conducted using a prototype seven-rod probe (15 mm long central rod) connected to a single port of vector network analyzer. The samples were moistened with distilled water and KCl solutions in order to obtain six different moisture content levels. The complex dielectric permittivity was determined from vector network analyzer reflection-coefficient measurements based on the open-water-liquid calibration procedure. Next, the fitting of volumetric water content-real part of dielectric permittivity calibration curves was performed for each material at selected frequencies, and the obtained relations were compared with well-known calibration equations. Additionally, a salinity index for the tested materials was calculated. It was concluded that pure talc is not an optimal material for the calibration and verification of dielectric methods. The calibration curves obtained for glass beads and the mixtures of glass beads with talc gave results close to well-known reference calibration functions. Additionally, the addition of talc caused the data points to be less scattered. Moreover, the values of the salinity index for the tested materials were in a good agreement with literature data for sand. The obtained results indicated that glass beads with the addition of talc can be used as a reference material for the calibration and verification of dielectric methods and devices for soil moisture measurement.

7.
J Phys Chem B ; 124(8): 1521-1530, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32009404

RESUMEN

In this study, we investigated the cooperative molecular dynamics of poly(vinylpyrrolidone) (PVP), ice, and uncrystallized water (UCW) in partially crystallized PVP-water mixtures by means of broadband dielectric spectroscopy. Three relaxation processes, denoted I, II, and III, were observed at temperatures ranging from immediately below the crystallization temperature (Tc) to approximately 200 K. At temperatures of 173-193 K, processes I and II cannot be distinguished. Below 168 K, process II separates into two processes: process IV at higher frequencies and process V at lower frequencies. Process I contributes to process V. In partially crystallized mixtures, process I originates from UCW in an uncrystallized phase with PVP. Process II is attributed to ice in the mixture, with a relaxation time that is 2 orders of magnitude smaller than that of pure ice. The concentration dependence of the strength of process II and the relaxation time relative to that of ice in bovine serum albumin (BSA)-water and gelatin-water mixtures strongly support this conclusion. Observation of processes IV and V indicates the presence of multiple ice relaxation processes. Process III is attributed to the α process of PVP in the uncrystallized phase in 40 and 50 wt % PVP mixtures. For mixtures with 30 wt % PVP or less, process III is attributed not only to the α process of PVP but also to interfacial polarization.

8.
Skin Res Technol ; 26(2): 255-262, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31556189

RESUMEN

BACKGROUND: The dynamic behavior of water molecules remains an important subject for understanding human skin. The change in the dynamics of water molecules from those in bulk water can be effectively observed by dielectric spectroscopy. To study water in the human skin in vivo, non-invasive and non-destructive measurements are essential. Since many unknowns remain from previous research, in this report we employ a two-layer dielectric model to evaluate the penetration depth of the electric field and use the results in measurements on human skin. MATERIALS AND METHODS: We used open-ended coaxial probes with different diameters to perform time-domain reflectometry (TDR) measurements for an acetone-Teflon double-layer model and for human skin from various parts of the body. RESULTS: The electric-field penetration depth obtained from model measurements increases with the increasing outer diameter of open-ended coaxial electrodes. For skin measurements, the relaxation strength corresponding to the water content shows a clear dependence on the epidermal thickness of the measured body parts. CONCLUSION: We determined the depth distribution of the water content of skin from results of dielectric measurements obtained using electrodes with various electric-field penetration depths. We found exponential decays with the thickness of the epidermis of each body part for several examinees. This study suggests an effective method for detailed evaluations of human skin.


Asunto(s)
Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Piel/química , Adulto , Agua Corporal/química , Electrodos , Diseño de Equipo , Femenino , Humanos , Masculino , Fenómenos Fisiológicos de la Piel , Adulto Joven
9.
Sensors (Basel) ; 19(11)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181722

RESUMEN

The dynamics of a hydrogen bonding network (HBN) relating to macroscopic properties of hydrogen bonding liquids were observed as a significant relaxation process by dielectric spectroscopy measurements. In the cases of water and water rich mixtures including biological systems, a GHz frequency relaxation process appearing at around 20 GHz with the relaxation time of 8.2 ps is generally observed at 25 °C. The GHz frequency process can be explained as a rate process of exchanges in hydrogen bond (HB) and the rate becomes higher with increasing HB density. In the present work, this study analyzed the GHz frequency process observed by suitable open-ended coaxial electrodes, and physical meanings of the fractal nature of water structures were clarified in various aqueous systems. Dynamic behaviors of HBN were characterized by a combination of the average relaxation time and the distribution of the relaxation time. This fractal analysis offered an available approach to both solution and dispersion systems with characterization of the aggregation or dispersion state of water molecules. In the case of polymer-water mixtures, the HBN and polymer networks penetrate each other, however, the HBN were segmented and isolated more by dispersed and aggregated particles in the case of dispersion systems. These HBN fragments were characterized by smaller values of the fractal dimension obtained from the fractal analysis. Some examples of actual usages suggest that the fractal analysis is now one of the most effective tools to understand the molecular mechanism of HBN in aqueous complex materials including biological systems.


Asunto(s)
Electrodos , Agua/química , Espectroscopía Dieléctrica
10.
Curr Drug Deliv ; 15(10): 1381-1392, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30124152

RESUMEN

Surgical operations are impossible without administering proper analgesia. Advancement in the field of anesthesia has invariably resulted in the accomplishment of all surgical processes without any inconvenience. Admittedly, the use of noble gas is on the decline. The noble gases may not interact chemically with any other substance under normal temperature and pressure but they may interact with proteins and lipids. Different anesthetic molecules may stimulate either proteins or lipids in membrane. There is a connection between the anesthetic molecules and the hydrophobic region of the membrane. In the present review, we attempt to highlight the interaction between the anesthetic molecule with proteins and lipids and their effects. We sketched few noble gases and some other existing molecules such as halothane and alcohol which interacted with proteins and lipids.


Asunto(s)
Anestésicos/química , Lípidos/química , Gases Nobles/química , Proteínas/química , Animales , Humanos
11.
Langmuir ; 34(9): 3003-3009, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29412671

RESUMEN

Cloud points of poly( N-isopropylacrylamide) in aqueous mixed solvents, with methanol as the cosolvent, are experimentally measured for polymer concentrations varied up to as high as the weight fraction 0.25. They are shown to form closed loops on the ternary phase plane in the temperature region between 5 and 30 °C, and hence co-nonsolvency is complete. Miscibility loops shrink by cooling, or equivalently, they exhibit lower critical solution temperature behavior. For a fixed polymer concentration, there is a composition of the mixed solvent at which the cloud-point temperature takes the lowest value. This minimum cloud-point temperature composition of the mixed solvent turned out to be almost independent of the polymer concentration, at least within the measured dilute region below the weight fraction 0.25. On the basis of the assumption that the phase separation is closely related to the preferential adsorption of the solvents by hydrogen bonding, we employ a model solution of Flory-Huggins type, augmented with direct and cooperative polymer-solvent hydrogen bonds, to construct the ternary phase diagrams. Theoretical calculation of the spinodal curves is performed, and the results are compared with the obtained experimental cloud-point data. The effect of molecular volume of the cosolvent is also studied within the same theoretical framework. Possibility for a upper critical solution temperature co-nonsolvency to appear for cosolvents with larger molecular volume is discussed.

12.
Gels ; 4(3)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-30674832

RESUMEN

Dynamics of solvent molecules restricted in poly (acryl amide) gels immersed in solvent mixtures of acetone⁻, 1,4-dioxane⁻, and dimethyl sulfoxide⁻water were analyzed by the time domain reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation strength obtained by dielectric measurements, and similar behaviors with polymer concentration dependences for the solutions were obtained except for the high polymer concentration in collapsed gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by those for bulk solvent suggested that the scaling exponent determined from the scaling variable defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and unity, respectively, except for collapsed gels. The difference in these components reflects characteristic molecular interactions in the rotational and translational diffusions, and offered a physical picture of the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction from polymer chains suggests a new methodology of characterization of water structures.

13.
J Phys Chem B ; 121(13): 2896-2901, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28288513

RESUMEN

Broadband dielectric spectroscopy measurements were performed on partially crystallized gelatin-water mixtures with gelatin concentrations of 1-5 wt % for temperatures between 123 and 298 K to study the dynamics of ice. These systems contain only hexagonal ice. Nevertheless, four dielectric relaxation processes of ice were observed. At temperatures below the crystallization temperature, a loss peak was observed, and it separated into four loss peaks at around 225 K. Using the temperature and concentration dependencies of these relaxation processes, we confirmed that these four processes originated from ice. For the relaxation time of ice, τice, the deviation of the temperature dependence of τice from the Arrhenius type is larger for the relaxation process at the higher-frequency side. For the temperature dependence of τice for the dominant process, three temperature ranges with different activation energies, Ea, were investigated. The intermediate-temperature range of τice with the smallest Ea decreased as the gelatin concentration increased; therefore, τice of the dominant process changed from the relaxation process with the smaller τice to that with the larger τice as the gelatin concentration increased. In addition, the relaxation process of ice with larger τice values was found to have larger values of Ea. These results suggest that a higher gel network density affects the temperature dependence of τice.

14.
J Oleo Sci ; 66(3): 235-249, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28190809

RESUMEN

Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.


Asunto(s)
Aceites de Plantas/química , Cloruro de Sodio/química , Fenómenos Electromagnéticos , Electrohumectación , Ácido Oléico/química , Aceite de Brassica napus , Tensión Superficial
16.
Carbohydr Polym ; 159: 171-177, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28038746

RESUMEN

Self-assembly of acetylated dextran (Ac-DEXs) was investigated with a modified dextran with acetic anhydride in the presence of pyridine. The effect of acetylation degree on solution properties has been investigated by static and dynamic light scattering (DLS). Molecular weight (Mw) and the radius of gyration (Rg) of dextran significantly increased with acetylation degree due to the aggregates formation. However, those aggregates noticeably reduced with further increase of acetylation degree. It suggested that the aggregates have shrinkage. The aggregate formation is clearly confirmed by DLS analysis in the presence of the bimodal relaxation distribution for Ac-DEXs. The hydrodynamic radius (Rh) of fast and slow mode is distinctly corresponded with single dextran macromolecules and aggregates, respectively. The Rh of aggregates varied slightly with increasing acetylation degree. The aggregates of Ac-DEXs represent hard spherical nanoparticles whereas the random coil structure is found in dextran. Formation of gel nanoparticles was monitored at the highest acetylated substitution.

17.
J Phys Chem B ; 121(1): 265-272, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-27966346

RESUMEN

The glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively. A dynamic crossover, called the Arrhenius to non-Arrhenius transition of UCW, was observed at the glass transition temperature of the relaxation process of hydrated gelatin for all mixtures. The amount of UCW increases with increasing gelatin content. However, above 35 wt % gelatin, the amount of UCW became more dependent on the gelatin concentration. This increase in UCW causes a decrease in the glass transition temperature of the cooperative motion of gelatin and UCW, which appears to result from a change in the aggregation structure of gelatin in the mixture at a gelatin concentration of approximately 35 wt %. The temperature dependence of the relaxation time of process II has nearly the same activation energy as pure ice made by slow crystallization of ice Ih. This implies that process II originates from the dynamics of slowly crystallized ice Ih.


Asunto(s)
Espectroscopía Dieléctrica , Gelatina/química , Hielo , Simulación de Dinámica Molecular , Agua/química , Cristalización
18.
J Phys Chem B ; 120(27): 6882-9, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27320337

RESUMEN

In this study, broadband dielectric spectroscopy and differential scanning calorimetry (DSC) measurements are performed to study the dynamics of water and polymers in an aqueous solution of poly(vinylpyrrolidone) (PVP) with concentrations of 60, 65, and 70 wt % PVP in a temperature range of 123-298 K. Two distinct relaxation processes, l- and h-processes, which originate from the segmental chain motion of PVP and the primary relaxation process of water, respectively, are observed simultaneously. The relationship between l- and h-processes and their temperature dependences mimic those of the α-process and Johari-Goldstein ß-process, which are observed in ordinal glass formers. The relaxation time of the l-process, τl, obeys the Vogel-Fulcher (VF)-type temperature dependence, and the glass-transition temperature of the l-process, Tg,l, which is defined by the temperature that is reached in a τl of 100-1000 s, shows good agreement with the calorimetric Tg obtained by DSC. The temperature dependence of the relaxation time of the h-process, τh, exhibits a crossover from VF to Arrhenius behavior at the so-called fragile-to-strong transition (FST) of water at Tg,l. The temperature dependence of the relaxation strength of the h-process, Δεh, increases with a decrease in temperature from 298 K to Tg,l. Below Tg,l, Δεh is nearly constant or slightly decreases with decreasing temperature. According to previous studies on aqueous solutions of sugars and alcohols, the Δε of the ν-process, which originates from local motion of water, decreases with decreasing temperature above the Tg of the α-process, which originates from the cooperative motion of the solute and water. Therefore, the l-process in the PVP-water mixture is not a result of the cooperative motion of PVP and water but rather a result of the polymer-polymer cooperative motion of PVP. In addition, agreement among Tg,l, the temperature of the FST of water, and calorimetric Tg suggests that the FST of water occurs at Tg.

19.
J Phys Chem B ; 120(16): 3950-3, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27056192

RESUMEN

Dielectric relaxation process of ice-Ih has been investigated by many researchers. Pioneering studies focused on the temperature dependence of the dielectric relaxation time, τice, were reported by Auty in 1952 [ Auty, R. P.; Cole, R. H. J. Chem. Phys . 1952 , 120 , 1309 ] and Johari in 1981 [ Johari, G. P.; Whalley, E. J. Chem. Phys. 1981 , 75 , 1333 ]. However, the temperature dependences of τice found in these studies are not in agreement. While Auty et al. reported a single Arrhenius temperature dependence of τice for the entire 207-273 K temperature range, Johari et al. reported changes in the temperature dependence of τice at 230 and 140 K. In this study, the temperature dependence of τice is investigated by broadband dielectric spectroscopy for ice prepared by three different procedures. For all investigated ices, a dielectric relaxation process is observed, and τice decreases with increasing temperature. Temperature dependence of τice with rapid crystallization shows the same properties at temperatures down to 140 K as that reported by Johari et al. On the other hand, ice obtained by slow crystallization exhibits the same temperature dependence of τice as those reported by Auty et al. We suggest that the difference between the temperature dependences of τice found by Auty et al. and Johari et al. can be controlled by preparation conditions. That is, the growth rate of the ice crystal can affect τice because a slow growth speed of the ice crystal induces a smaller impurity content of ice, giving rise to an Arrhenius temperature dependence of τice.

20.
Biopolymers ; 105(9): 626-32, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27018805

RESUMEN

Immunoglobulin G (IgG) is a Y-shaped globular protein consisting of two Fab segments connecting to an Fc segment with a flexible hinge region, in which the Fab segments show secondary flexibility at an "elbow" region. In the present work, the hinge-bending and elbow-bending motions of aqueous solutions of IgG by microwave dielectric measurements below the freezing point of bulk water was observed. The presence of unfreezable water around the macromolecules reduced the effects of steric hindrance normally generated by ice and enabled the intramolecular motions of IgG. At the same time, the overall IgG molecule rotation was restricted by ice. Papain digestion and reduction of the disulfide linkage at the hinge region was used to generate Fab and Fc fragments. In solutions of these fragments, the dielectric relaxation process of the hinge-bending motion was absent, although the elbow-bending motion remained. Three relaxation processes were observed for papain-digested IgG. The high, middle, and low frequency processes were attributed to unfrozen water, local peptide motions cooperating with bound water, and the elbow-bending motion, respectively. In the case of the intact IgG, an additional relaxation process due to the hinge-bending motion was observed at frequencies lower than that of the elbow-bending motion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 626-632, 2016.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...