Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pan Afr Med J ; 35(Suppl 2): 97, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33623621

RESUMEN

INTRODUCTION: Estimating the number of SARS-CoV-2 infected individuals at any specific time point is always a challenge due to asymptomatic cases, the incubation period and testing delays. Here we use an empirical analysis of cumulative death count, transmission-to-death time lag, and infection fatality rate (IFR) to evaluate and estimate the actual cases at a specific time point as a strategy of tracking the spread of COVID-19. METHODS: This method mainly uses death count, as COVID-19 related deaths are arguably more reliably reported than infection case numbers. Using an IFR estimate of 0.66%, we back-calculate the number of cases that would result in the cumulative number of deaths at a given time point in South Africa between 27 February and 14 April. We added the mean incubation period (6.4 days) and the onset-to-death time lag (17.8 days) to identify the estimated time lag between transmission and death (25 days, rounded up). We use the statistical programming language R to analyze the data and produce plots. RESULTS: We estimate 28,182 cases as of 14 April, compared with 3,465 reported cases. Weekly growth rate of actual cases dropped immediately after lockdown implementation and has remained steady, measuring at 51.2% as of 14 April. The timing of drop in growth rate suggests that South Africa's infection prevention strategy may have been effective at reducing viral transmission. CONCLUSION: Estimating the actual number of cases at a specific time point can support evidence-based policies to reduce and prevent the spread of COVID-19. Non-reported, asymptomatic, hard to reach and, mild cases are possible sources of outbreaks that could emerge after lockdown. Therefore, close monitoring, optimized screening strategy and prompt response to COVID-19 could help in stopping the spread of the virus.


Asunto(s)
COVID-19/epidemiología , Causas de Muerte , Distanciamiento Físico , Cuarentena , COVID-19/mortalidad , COVID-19/prevención & control , Brotes de Enfermedades , Humanos , Tamizaje Masivo , Sudáfrica/epidemiología , Factores de Tiempo
2.
Pak J Pharm Sci ; 25(2): 477-91, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22459480

RESUMEN

The new scientific innovation of engineering nanoparticles (NPs) at the atomic scale of 100 nm or less, has led to numerous novel and useful wide applications in electronics, chemicals, environmental protection, biological medicine. Manufacturers and consumers of the nanoparticles-related industrial products however, are likely to be exposed to these engineered nanomaterials which have various physical and chemical properties. These nanosize particles are likely to increase an unnecessary infinite toxicological effect on animals and environment, although their toxicological effects associated with human exposure are still unknown. In order to understand the effects of these exposures, this review seeks to examine the various toxicological portal routes associated with NPs exposures. These NPs can enter the host systems via skin spores, debilitated tissues, injection, olfactory, respiratory and intestinal tracts. These uptake routes of NPs may be intentional or unintentional. Their entry may lead to various diversified adverse biological effects. Until a clearer picture emerges, the limited data available suggest that caution must be exercised when potential exposures to NPs are encountered. Methods used in determining NPs portal of entry into experimental animals include pharyngeal instillation, injection, inhalation, cell culture lines and gavage exposures. This review also provides a step by step systematic approach for the easy identification and addressing of occupational health hazards arising from NPs.


Asunto(s)
Nanopartículas/toxicidad , Animales , Ojo/metabolismo , Tracto Gastrointestinal/metabolismo , Ingeniería Genética , Humanos , Nanopartículas/administración & dosificación , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA