Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38793742

RESUMEN

The emergence of rapidly spreading variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a major challenge to vaccines' protective efficacy. Intramuscular (IM) vaccine administration induces short-lived immunity but does not prevent infection and transmission. New vaccination strategies are needed to extend the longevity of vaccine protection, induce mucosal and systemic immunity and prevent viral transmission. The intranasal (IN) administration of the VSV-ΔG-spike vaccine candidate directly to mucosal surfaces yielded superior mucosal and systemic immunity at lower vaccine doses. Compared to IM vaccination in the K18-hACE2 model, IN vaccination preferentially induced mucosal IgA and T-cells, reduced the viral load at the site of infection, and ameliorated disease-associated brain gene expression. IN vaccination was protective even one year after administration. As most of the world population has been vaccinated by IM injection, we demonstrate the potential of a heterologous IM + IN vaccination regimen to induce mucosal immunity while maintaining systemic immunity. Furthermore, the IM + IN regimen prevented virus transmission in a golden Syrian hamster co-caging model. Taken together, we show that IN vaccination with VSV-ΔG-spike, either as a homologous IN + IN regimen or as a boost following IM vaccination, has a favorable potential over IM vaccination in inducing efficient mucosal immunity, long-term protection and preventing virus transmission.

2.
Nat Commun ; 15(1): 3265, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627363

RESUMEN

The eradication of smallpox was officially declared by the WHO in 1980, leading to discontinuation of the vaccination campaign against the virus. Consequently, immunity against smallpox and related orthopoxviruses like Monkeypox virus gradually declines, highlighting the need for efficient countermeasures not only for the prevention, but also for the treatment of already exposed individuals. We have recently developed human-like monoclonal antibodies (mAbs) from vaccinia virus-immunized non-human primates. Two mAbs, MV33 and EV42, targeting the two infectious forms of the virus, were selected for in vivo evaluation, based on their in vitro neutralization potency. A single dose of either MV33 or EV42 administered three days post-infection (dpi) to BALB/c female mice provides full protection against lethal ectromelia virus challenge. Importantly, a combination of both mAbs confers full protection even when provided five dpi. Whole-body bioimaging and viral load analysis reveal that combination of the two mAbs allows for faster and more efficient clearance of the virus from target organs compared to either MV33 or EV42 separately. The combined mAbs treatment further confers post-exposure protection against the currently circulating Monkeypox virus in Cast/EiJ female mice, highlighting their therapeutic potential against other orthopoxviruses.


Asunto(s)
Orthopoxvirus , Infecciones por Poxviridae , Viruela , Vaccinia , Humanos , Femenino , Animales , Ratones , Anticuerpos Monoclonales , Infecciones por Poxviridae/prevención & control , Virus Vaccinia , Anticuerpos Antivirales
3.
Curr Issues Mol Biol ; 45(10): 7944-7955, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37886945

RESUMEN

Following viral infection, T-cells are crucial for an effective immune response to intracellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays were required in pre-clinical trials to evaluate the immune response following vaccination against SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and potency of the cellular response to infection or vaccination, a reliable and specific activity assay was needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the strength of the immune response towards antigens and aiding in antigen design for vaccination. In this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries or computational scanning combined with a cellular activity assay. Our scans identified four CD8 T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a reliable T-cell response assay, which was examined and used in various experimental mouse models for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen design for vaccination and establish cellular activity assays against uncharacterized antigens of emerging pathogens.

4.
Biomedicines ; 11(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37760814

RESUMEN

The spread of SARS-CoV-2 variants of concern (VOCs) is of great importance since genetic changes may increase transmissibility, disease severity and reduce vaccine effectiveness. Moreover, these changes may lead to failure of diagnostic measures. Therefore, variant-specific diagnostic methods are essential. To date, genetic sequencing is the gold-standard method to discriminate between variants. However, it is time-consuming (taking several days) and expensive. Therefore, the development of rapid diagnostic methods for SARS-CoV-2 in accordance with its genetic modification is of great importance. In this study we introduce a Mass Spectrometry (MS)-based methodology for the diagnosis of SARS-CoV-2 in propagated in cell-culture. This methodology enables the universal identification of SARS-CoV-2, as well as variant-specific discrimination. The universal identification of SARS-CoV-2 is based on conserved markers shared by all variants, while the identification of specific variants relies on variant-specific markers. Determining a specific set of peptides for a given variant consists of a multistep procedure, starting with an in-silico search for variant-specific tryptic peptides, followed by a tryptic digest of a cell-cultured SARS-CoV-2 variant, and identification of these markers by HR-LC-MS/MS analysis. As a proof of concept, this approach was demonstrated for four representative VOCs compared to the wild-type Wuhan reference strain. For each variant, at least two unique markers, derived mainly from the spike (S) and nucleocapsid (N) viral proteins, were identified. This methodology is specific, rapid, easy to perform and inexpensive. Therefore, it can be applied as a diagnostic tool for pathogenic variants.

5.
Microbiol Spectr ; : e0159823, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737634

RESUMEN

Members of the Orthopoxvirus genus can cause severe infections in humans. Global vaccination against smallpox, caused by the variola virus, resulted in the eradication of the disease in 1980. Shortly thereafter, vaccination was discontinued, and as a result, a large proportion of the current population is not protected against orthopoxviruses. The concerns that the variola virus or other engineered forms of poxviruses may re-emerge as bioweapons and the sporadic outbreaks of zoonotic members of the family, such as Mpox, which are becoming more frequent and prevalent, also emphasize the need for an effective treatment against orthopoxviruses. To date, the most effective way to prevent or control an orthopoxvirus outbreak is through vaccination. However, the traditional vaccinia-based vaccine may cause severe side effects. Vaccinia immune globulin was approved by the U.S. Food and Drug Administration (FDA) for the treatment of vaccine adverse reactions and was also used occasionally for the treatment of severe orthopoxvirus infections. However, this treatment carries many disadvantages and is also in short supply. Thus, a recombinant alternative is highly needed. In this study, two non-human primates were immunized with live vaccinia virus, producing a robust and diverse antibody response. A phage-display library was constructed based on the animal's lymphatic organs, and a panel of neutralizing monoclonal antibodies (mAbs), recognizing diverse proteins of the vaccinia virus, was selected and characterized. These antibodies recognized both mature virion and enveloped virion forms of the virus and exhibited high affinity and potent in vitro neutralization capabilities. Furthermore, these monoclonal antibodies were able to neutralize Mpox 2018 and 2022 strains, suggesting a potential for cross-species protection. We suggest that a combination of these mAbs has the potential to serve as recombinant therapy both for vaccinia vaccine adverse reactions and for orthopoxvirus infections. IMPORTANCE In this manuscript, we report the isolation and characterization of several recombinant neutralizing monoclonal antibodies (mAbs) identified by screening a phage-display library constructed from lymphatic cells collected from immunized non-human primates. The antibodies target several different antigens of the vaccinia virus, covering both mature virion and extracellular enveloped virion forms of the virus. We document strong evidence indicating that they exhibit excellent affinity to their respective antigens and, most importantly, optimal in vitro neutralization of the virus, which exceeded that of vaccinia immune globulin. Furthermore, we present the ability of these novel isolated mAbs (as well as the sera collected from vaccinia-immunized animals) to neutralize two Mpox strains from the 2018 to 2022 outbreaks. We believe that these antibodies have the potential to be used for the treatment of vaccinia vaccine adverse reactions, for other orthopoxvirus infections, and in cases of unexpected bioterror scenarios.

6.
Viruses ; 15(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37376662

RESUMEN

Since the emergence of the original SARS-CoV-2, several variants were described, raising questions as to the ability of recently developed vaccine platforms to induce immunity and provide protection against these variants. Here, we utilized the K18-hACE2 mouse model to show that VSV-ΔG-spike vaccination provides protection against several SARS-CoV-2 variants: alpha, beta, gamma, and delta. We show an overall robust immune response, regardless of variant identity, leading to reduction in viral load in target organs, prevention of morbidity and mortality, as well as prevention of severe brain immune response, which follows infection with various variants. Additionally, we provide a comprehensive comparison of the brain transcriptomic profile in response to infection with different variants of SARS-CoV-2 and show how vaccination prevents these disease manifestations. Taken together, these results highlight the robust VSV-ΔG-spike protective response against diverse SARS-CoV-2 variants, as well as its promising potential against newly arising variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
7.
Vaccines (Basel) ; 10(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36560529

RESUMEN

SARS-CoV-2 is evolving with increased transmission, host range, pathogenicity, and virulence. The original and mutant viruses escape host innate (Interferon) immunity and adaptive (Antibody) immunity, emphasizing unmet needs for high-yield, commercial-scale manufacturing to produce inexpensive vaccines/boosters for global/equitable distribution. We developed DYAI-100A85, a SARS-CoV-2 spike receptor binding domain (RBD) subunit antigen vaccine expressed in genetically modified thermophilic filamentous fungus, Thermothelomyces heterothallica C1, and secreted at high levels into fermentation medium. The RBD-C-tag antigen strongly binds ACE2 receptors in vitro. Alhydrogel®'85'-adjuvanted RDB-C-tag-based vaccine candidate (DYAI-100A85) demonstrates strong immunogenicity, and antiviral efficacy, including in vivo protection against lethal intranasal SARS-CoV-2 (D614G) challenge in human ACE2-transgenic mice. No loss of body weight or adverse events occurred. DYAI-100A85 also demonstrates excellent safety profile in repeat-dose GLP toxicity study. In summary, subcutaneous prime/boost DYAI-100A85 inoculation induces high titers of RBD-specific neutralizing antibodies and protection of hACE2-transgenic mice against lethal challenge with SARS-CoV-2. Given its demonstrated safety, efficacy, and low production cost, vaccine candidate DYAI-100 received regulatory approval to initiate a Phase 1 clinical trial to demonstrate its safety and efficacy in humans.

8.
Viruses ; 14(12)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36560832

RESUMEN

Fundamental key processes in viral infection cycles generally occur in distinct cellular sites where both viral and host factors accumulate and interact. These sites are usually termed viral replication organelles, or viral factories (VF). The generation of VF is accompanied by the synthesis of viral proteins and genomes and involves the reorganization of cellular structure. Recently, rVSV-ΔG-spike (VSV-S), a recombinant VSV expressing the SARS-CoV-2 spike protein, was developed as a vaccine candidate against SARS-CoV-2. By combining transmission electron microscopy (TEM) tomography studies and immuno-labeling techniques, we investigated the infection cycle of VSV-S in Vero E6 cells. RT-real-time-PCR results show that viral RNA synthesis occurs 3-4 h post infection (PI), and accumulates as the infection proceeds. By 10-24 h PI, TEM electron tomography results show that VSV-S generates VF in multi-lamellar bodies located in the cytoplasm. The VF consists of virus particles with various morphologies. We demonstrate that VSV-S infection is associated with accumulation of cytoplasmatic viral proteins co-localized with dsRNA (marker for RNA replication) but not with ER membranes. Newly formed virus particles released from the multi-lamellar bodies containing VF, concentrate in a vacuole membrane, and the infection ends with the budding of particles after the fusion of the vacuole membrane with the plasma membrane. In summary, the current study describes detailed 3D imaging of key processes during the VSV-S infection cycle.


Asunto(s)
COVID-19 , Virus de la Estomatitis Vesicular Indiana , Humanos , Virus de la Estomatitis Vesicular Indiana/genética , SARS-CoV-2 , Proteínas Virales/metabolismo
9.
Microbiol Spectr ; 10(6): e0115022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36314945

RESUMEN

Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.


Asunto(s)
COVID-19 , Coinfección , Hepatitis C , Humanos , SARS-CoV-2/metabolismo , Hepacivirus , Enzima Convertidora de Angiotensina 2/metabolismo , Receptores Virales/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Hepatitis C/complicaciones , Hepatocitos , Unión Proteica
10.
Euro Surveill ; 27(35)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36052723

RESUMEN

The current monkeypox virus global spread and lack of data regarding clinical specimens' infectivity call for examining virus infectivity, and whether this correlates with results from PCR, the available diagnostic tool. We show strong correlation between viral DNA amount in clinical specimens and virus infectivity toward BSC-1 cell line. Moreover, we define a PCR threshold value (Cq ≥ 35, ≤ 4,300 DNA copies/mL), corresponding to negative viral cultures, which may assist risk-assessment and decision-making regarding protective-measures and guidelines for patients with monkeypox.


Asunto(s)
Mpox , ADN Viral/análisis , ADN Viral/genética , Humanos , Israel/epidemiología , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Reacción en Cadena de la Polimerasa/métodos
11.
Cell Rep ; 39(11): 110954, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671758

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.


Asunto(s)
COVID-19 , Proteínas no Estructurales Virales , Línea Celular , Humanos , Estabilidad del ARN , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo
12.
Arch Toxicol ; 96(8): 2329-2339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577986

RESUMEN

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Conejos , SARS-CoV-2 , Distribución Tisular
13.
Sci Rep ; 12(1): 5758, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388061

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. More than 274 million individuals have suffered from COVID-19 and over five million people have died from this disease so far. Therefore, there is an urgent need for therapeutic drugs. Repurposing FDA approved drugs should be favored since evaluation of safety and efficacy of de-novo drug design are both costly and time consuming. We report that imatinib, an Abl tyrosine kinase inhibitor, robustly decreases SARS-CoV-2 infection and uncover a mechanism of action. We show that imatinib inhibits the infection of SARS-CoV-2 and its surrogate lentivector pseudotype. In latter, imatinib inhibited both routes of viral entry, endocytosis and membrane-fusion. We utilized a system to quantify in real-time cell-cell membrane fusion mediated by the SARS-CoV-2 surface protein, Spike, and its receptor, hACE2, to demonstrate that imatinib inhibits this process in an Abl1 and Abl2 independent manner. Furthermore, cellular thermal shift assay revealed a direct imatinib-Spike interaction that affects Spike susceptibility to trypsin digest. Collectively, our data suggest that imatinib inhibits Spike mediated viral entry by an off-target mechanism. These findings mark imatinib as a promising therapeutic drug in inhibiting the early steps of SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , Mesilato de Imatinib/farmacología , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
14.
Nat Commun ; 13(1): 2237, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35469023

RESUMEN

The global spread of SARS-CoV-2 led to major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SARS-CoV-2 can provide insights into the virus pathogenesis, and facilitate the development of novel therapeutics. Here, employing a genome-scale CRISPR screen, we provide a comprehensive data-set of cellular factors that are exploited by wild type SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. We identified several host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination, Heparan sulfate biogenesis and host phosphatidylglycerol biosynthesis. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential proviral gene for all variants inspected. We show that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals shows elevated levels of GATA6, suggesting a role in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and inhibition of viral infectivity. Overall, we show GATA6 may represent a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Factor de Transcripción GATA6/genética , Humanos , Peptidil-Dipeptidasa A/metabolismo , Provirus/genética , SARS-CoV-2/genética
15.
bioRxiv ; 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35313595

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

16.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214749

RESUMEN

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

17.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215785

RESUMEN

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Innata , Poli I-C/inmunología , Poli I-C/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Receptor Toll-Like 3/agonistas , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/prevención & control , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Transgénicos , SARS-CoV-2/inmunología , Receptor Toll-Like 3/inmunología , Carga Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032184

RESUMEN

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Asunto(s)
Vacunas contra la COVID-19/toxicidad , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Cricetinae , Femenino , Glicoproteínas de Membrana/genética , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Conejos , Porcinos , Vacunación , Vacunas Sintéticas/toxicidad , Proteínas del Envoltorio Viral/genética
19.
Nat Commun ; 12(1): 5819, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611155

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Coinfección/inmunología , Coinfección/virología , Inmunidad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , COVID-19/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/genética , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba/genética , Carga Viral/inmunología
20.
Front Bioeng Biotechnol ; 9: 737627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660558

RESUMEN

The COVID-19 pandemic initiated a worldwide race toward the development of treatments and vaccines. Small animal models included the Syrian golden hamster and the K18-hACE2 mice infected with SARS-CoV-2 to display a disease state with some aspects of human COVID-19. A group activity of animals in their home cage continuously monitored by the HCMS100 (Home cage Monitoring System 100) was used as a sensitive marker of disease, successfully detecting morbidity symptoms of SARS-CoV-2 infection in hamsters and in K18-hACE2 mice. COVID-19 convalescent hamsters rechallenged with SARS-CoV-2 exhibited minor reduction in group activity compared to naive hamsters. To evaluate the rVSV-ΔG-spike vaccination efficacy against SARS-CoV-2, we used the HCMS100 to monitor the group activity of hamsters in their home cage. A single-dose rVSV-ΔG-spike vaccination of the immunized group showed a faster recovery than the nonimmunized infected hamsters, substantiating the efficacy of rVSV-ΔG-spike vaccine. HCMS100 offers nonintrusive, hands-free monitoring of a number of home cages of hamsters or mice modeling COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA