Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38886122

RESUMEN

Hydrazidase from Microbacterium hydrocarbonoxydans was revealed to catalyze synthetic hydrazide compounds, enabling the bacteria to grow with them as sole carbon source, but natural substrates have remained unknown. In this study, kinetic analyses of hydrazidase with parabens showed that the compounds can be substrates. Then, methylparaben induced gene expressions of the operon containing hydrazidase and ABC transporter, and the compound as sole carbon source was able to grow the bacteria. Furthermore, homology search was carried out revealing that several actinomycetes possess hydrazidase-homolog in the operon. Among those bacteria, an amidase from Pseudonocardia acaciae was subjected to a kinetic analysis and a structure determination revealing similar but not identical to those of hydrazidase. Since parabens are reported to exist in plants and soil, and several actinomycetes codes the homologous operon, the enzymes with those operons may play a physiologically important role for bacterial survival with use of parabens.

2.
Sci Rep ; 14(1): 67, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167631

RESUMEN

Movement is an important behavior observed in a wide range of taxa. Previous studies have examined genes controlling movement using wing polymorphic insects and genes controlling wing size. However, few studies have investigated genes controlling movement activity rather than morphological traits. In the present study, we conducted RNA sequencing using populations with higher (WL) and lower (WS) mobility established by artificial selection in the red flour beetle Tribolium castaneum and compared gene expression levels between selected populations with two replicate lines. As a result, we found significant differences between the selected populations in 677 genes expressed in one replicate line and 1198 genes expressed in another replicate line, of which 311 genes were common to the two replicate lines. Furthermore, quantitative PCR focusing on 6 of these genes revealed that neuropeptide F receptor gene (NpF) was significantly more highly expressed in the WL population than in the WS population, which was common to the two replicate lines. We discuss differences in genes controlling movement between walking activity and wing polymorphism.


Asunto(s)
Escarabajos , Tribolium , Animales , Tribolium/genética , Tribolium/metabolismo , Escarabajos/genética , Perfilación de la Expresión Génica , Transcriptoma , Secuencia de Bases
3.
BMC Microbiol ; 23(1): 285, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798648

RESUMEN

BACKGROUND: Previous studies have revealed a nitric oxide (NO) metabolic cycle in which NO, nitrate (NO3-), and nitrite (NO2-) circulate. The NO produced in this cycle serves as a signalling molecule that regulates actinorhodin (ACT) production via the DevS/DevR NO-dependent two-component system (TCS) in Streptomyces coelicolor A3(2) M145. However, the mechanisms involved in the regulation of NO signalling in S. coelicolor have not yet been elucidated. Mycothiol (MSH), a thiol molecule produced by Actinomyces, is involved in the defence mechanisms against oxidative stress. Therefore, this study focused on the correlation between intracellular NO and MSH levels. RESULTS: To investigate the interaction of MSH with endogenously produced NO, we generated an S. coelicolor A3(2) strain deficient in MSH biosynthesis. This mutant strain exhibited a decrease in low-molecular-weight S-nitrosothiols and intracellular NO levels during culture compared to those of the wild-type strain. Moreover, the mutant strain exhibited reduced activity of the DevS/DevR TCS, a regulator of NO homeostasis and ACT production, from the early stage of culture, along with a decrease in ACT production compared to those of the wild-type strain. CONCLUSIONS: This study suggests that MSH maintains intracellular NO homeostasis by forming S-nitrosomycothiol, which induces NO signalling. Finally, we propose a metabolic model in which MSH from endogenously produced NO facilitates the maintenance of both NO homeostasis and signalling in S. coelicolor A3(2) M145.


Asunto(s)
Streptomyces coelicolor , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Óxido Nítrico/metabolismo , Cisteína/metabolismo , Homeostasis , Regulación Bacteriana de la Expresión Génica , Antraquinonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología
4.
Biochem Biophys Res Commun ; 682: 293-298, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832386

RESUMEN

The soybean cyst nematode (SCN) is one of the most damaging pests affecting soybean production. SCN displays important host recognition behaviors, such as hatching and infection, by recognizing several compounds produced by the host. Therefore, controlling SCN behaviors such as chemotaxis and thermotaxis is an attractive pest control strategy. In this study, we found that cyclic nucleotide-gated channels (CNG channels) regulate SCN chemotaxis and thermotaxis and Hg-tax-2, a gene encoding a CNG channel, is an important regulator of SCN behavior. Gene silencing of Hg-tax-2 and treatment with a CNG channel inhibitor reduced the attraction of second-stage juveniles to nitrate, an attractant with a different recognition mechanism from the host-derived chemoattractant(s), and to host soybean roots, as well as their avoidance behavior toward high temperatures. Co-treatment of ds Hg-tax-2 with the CNG channel inhibitor indicated that Hg-tax-2 is a major regulator of SCN chemotaxis and thermotaxis. These results suggest new avenues for research on control of SCN.


Asunto(s)
Mercurio , Nematodos , Tylenchoidea , Animales , Quimiotaxis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Glycine max/genética , Nucleótidos Cíclicos , Tylenchoidea/fisiología , Enfermedades de las Plantas
5.
J Pestic Sci ; 48(3): 107-110, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37745175

RESUMEN

Brassinosteroids (BRs) are steroid hormones that regulate plant growth, development, and stress resistance. In this study, we evaluated the effect of agrochemicals on dark-induced hypocotyl elongation, which is regulated by BRs, to identify novel chemicals that regulate BR action. We found that the juvenile hormone agonist fenoxycarb inhibited dark-induced hypocotyl elongation in Arabidopsis. Treatment with the same class of juvenile hormone agonist, pyriproxyfen, did not affect hypocotyl elongation. Co-treatment with fenoxycarb and BR partly canceled the fenoxycarb-induced hypocotyl suppression. In addition, gene expression analysis revealed that fenoxycarb altered the BR-responsive gene expression. These results indicate that fenoxycarb is a BR action inhibitor.

6.
Curr Res Insect Sci ; 4: 100066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559797

RESUMEN

Nociception is the sensory perception of noxious chemical stimuli. Repellent behavior to avoid noxious stimuli is indispensable for survival, and this mechanism has been evolutionarily conserved across a wide range of species, from mammals to insects. The transient receptor potential ankyrin 1 (TRPA1) channel is one of the most conserved noxious chemical sensors. Here, we describe the heterologous stable expression of Tribolium castaneum TRPA1 (TcTRPA1) in human embryonic kidney (HEK293) cells. The intracellular Ca2+ influx was measured when two compounds, citronellal and l-menthol, derived from plant essential oils, were applied in vitro using a fluorescence assay. The analysis revealed that citronellal evoked Ca2+ influx dose-dependently for TcTRPA1, whereas l-menthol did not. In combination with our present and previous results of the avoidance-behavioral assay at the organism level, we suggest that TcTRPA1 discriminates between these two toxic compounds, and diversification in the chemical nociception selectivity has occurred in TRPA1 channel among insect taxa.

7.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37355778

RESUMEN

Our previous studies revealed that a two-component system (TCS), DevS, and DevR, regulate both nitric oxide (NO) signaling and NO homeostasis in the actinobacterium Streptomyces coelicolor A3(2) M145, suggesting a reasonable system for NO-dependent metabolism. In this study, sequence alignment of DevR and DevR homologs found Asp66 (D66) and Thr196 (T196) as predicted phosphorylation sites of DevR. Phos-tag gel electrophoretic mobility shift assay suggested that D66 and T196 are involved in the phosphorylation of DevR. The respective point mutations of D66 and T196 significantly decreased the transcriptional activity of DevR, which affected nitrite production and aerial mycelium formation. These results suggested that both D66 and T196 of DevR are important for the regulation of NO homeostasis and signaling in S. coelicolor A3(2) M145.


Asunto(s)
Streptomyces coelicolor , Fosforilación , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Óxido Nítrico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Alineación de Secuencia , Regulación Bacteriana de la Expresión Génica
8.
ACS Omega ; 8(15): 13855-13862, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091382

RESUMEN

Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.

9.
Breed Sci ; 73(5): 435-444, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38737917

RESUMEN

Two modern high-quality Japanese malting barley cultivars, 'Sukai Golden' and 'Sachiho Golden', were subjected to RNA-sequencing of transcripts extracted from 20-day-old immature seeds. Despite their close relation, 2,419 Sukai Golden-specific and 3,058 Sachiho Golden-specific SNPs were detected in comparison to the genome sequences of two reference cultivars: 'Morex' and 'Haruna Nijo'. Two single nucleotide polymorphism (SNP) clusters respectively showing the incorporation of (1) the barley yellow mosaic virus (BaYMV) resistance gene rym5 from six-row non-malting Chinese landrace Mokusekko 3 on the long arm of 3H, and (2) the anthocyanin-less ant2 gene from a two-row Dutch cultivar on the long arm of 2H were detected specifically in 'Sukai Golden'. Using 221 recombinant inbred lines of a cross between 'Ishukushirazu' and 'Nishinochikara', another BaYMV resistance rym3 gene derived from six-row non-malting Japanese cultivar 'Haganemugi' was mapped to a 0.4-cM interval on the proximal region of 5H. Haplotype analysis of progenitor accessions of the two modern malting cultivars revealed that rym3 of 'Haganemugi' was independently introduced into 'Sukai Golden' and 'Sachiho Golden'. Residual chromosome 5H segments of 'Haganemugi' surrounding rym3 were larger in 'Sukai Golden'. Available results suggest possibilities for malting quality improvement by minimizing residual segments surrounding rym3.

10.
Appl Environ Microbiol ; 88(23): e0122222, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36354316

RESUMEN

Nitric oxide (NO) is a well-known signaling molecule in various organisms. Streptomyces undergoes complex morphological differentiation, similar to that of fungi. A recent study revealed a nitrogen oxide metabolic cycle that forms NO in Streptomyces coelicolor A3(2) M145. Further, endogenously produced NO serves as a signaling molecule. Here, we report that endogenously produced NO regulates cyclic 3',5'-diguanylate (c-di-GMP) levels and controls aerial mycelium formation through the c-di-GMP-binding transcriptional regulator BldD in S. coelicolor A3(2) M145. These observations provide important insights into the mechanisms regulating morphological differentiation. This is the first study to demonstrate a link between NO and c-di-GMP in S. coelicolor A3(2) M145. Morphological differentiation is closely linked to the initiation of secondary metabolism in actinomycetes. Thus, the NO signaling-based regulation of aerial mycelium formation has potential applications in the fermentation industry employing useful actinomycetes. IMPORTANCE Eukaryotic and prokaryotic cells utilize nitric oxide (NO) to regulate physiological functions. Besides its role as a producer of different bioactive substances, Streptomyces is suggested to be involved in mycelial development regulated by endogenously produced NO. However, the regulatory mechanisms are unclear. In this study, we proposed that NO signaling is involved in aerial mycelium formation in S. coelicolor A3(2) M145. NO serves as a signaling molecule for the regulation of intracellular cyclic 3',5'-diguanylate (c-di-GMP) levels, resulting in aerial mycelium formation controlled by a c-di-GMP receptor, BldD. As the abundant production of valuable secondary metabolites is closely related to the initiation of morphological differentiation in Streptomyces, NO may provide value for application in industrial fermentation by serving as a tool for regulating secondary metabolism.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Óxido Nítrico/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Streptomyces/metabolismo , Micelio/metabolismo
11.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322663

RESUMEN

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

12.
Biochem Biophys Res Commun ; 637: 93-99, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36384069

RESUMEN

Land plants exhibit various adaptation responses to unfavorable water environments, such as drought and flooding. The phytohormone abscisic acid (ABA) and ethylene play essential roles in plant adaptation to drought and flooding, respectively. It remains largely unknown how plants integrate environmental information for water availability. In the moss Physcomitrium patens, we recently reported that not only ethylene/flooding signaling but also ABA/osmostress signaling are mediated by ethylene receptor-related sensor histidine kinases (ETR-HKs). Subfamily I ETR-HKs of this moss were found to interact with a RAF kinase (ARK) and were required for ABA-dependent activation of SNF1-related protein kinase 2 (SnRK2) via ARK activation. To elucidate the mechanisms of ARK regulation by ETR-HKs, here we employed targeted in vivo mutagenesis of PpHK5, a member of subfamily I ETR-HKs. Analyses of ABA-insensitive Pphk5 mutants indicated that PpHK5 mutations affecting the interaction with ARK resulted in loss of PpHK5 function to activate ABA signaling. We also identified a PpHK5 mutation that does not affect ARK interaction but resulted in loss of PpHK5 function. These results suggest that physical interaction between ETR-HK and ARK is essential but not sufficient for the regulation of ARK activity, and the C-terminal response regulator domain is involved in regulating ARK activation.


Asunto(s)
Bryopsida , Histidina Quinasa/genética , Bryopsida/genética , Mutagénesis , Mutación , Etilenos , Ácido Abscísico
13.
J Exp Biol ; 225(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408938

RESUMEN

Light environments differ dramatically between day and night. The transition between diurnal and nocturnal visual ecology has happened repeatedly throughout evolution in many species. However, the molecular mechanism underlying the evolution of vision in recent diurnal-nocturnal transition is poorly understood. Here, we focus on hawkmoths (Lepidoptera: Sphingidae) to address this question by investigating five nocturnal and five diurnal species. We performed RNA-sequencing analysis and identified opsin genes corresponding to the ultraviolet (UV), short-wavelength (SW) and long-wavelength (LW)-absorbing visual pigments. We found no significant differences in the expression patterns of opsin genes between the nocturnal and diurnal species. We then constructed the phylogenetic trees of hawkmoth species and opsins. The diurnal lineages had emerged at least three times from the nocturnal ancestors. The evolutionary rates of amino acid substitutions in the three opsins differed between the nocturnal and diurnal species. We found an excess number of parallel amino acid substitutions in the opsins in three independent diurnal lineages. The numbers were significantly more than those inferred from neutral evolution, suggesting that positive selection acted on these parallel substitutions. Moreover, we predicted the visual pigment absorption spectra based on electrophysiologically determined spectral sensitivity in two nocturnal and two diurnal species belonging to different clades. In the diurnal species, the LW pigments shift 10 nm towards shorter wavelengths, and the SW pigments shift 10 nm in the opposite direction. Taken together, our results suggest that parallel evolution of opsins may have enhanced the colour discrimination properties of diurnal hawkmoths in ambient light.


Asunto(s)
Opsinas , Pigmentos Retinianos , Opsinas/genética , Filogenia , Pigmentos Retinianos/genética , Evolución Molecular , Opsinas de Bastones/genética , Opsinas de Bastones/química
14.
J Pestic Sci ; 47(1): 43-46, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35414758

RESUMEN

Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and developmental processes. Also, SLs are allelochemicals that induce the seed germination of root parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identify novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, reduced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treatment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.

15.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217609

RESUMEN

Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonataE93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93 Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93 These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.


Asunto(s)
Evolución Biológica , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Alas de Animales , Animales , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Odonata/genética , Interferencia de ARN
16.
PLoS One ; 17(1): e0262817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045135

RESUMEN

Olfaction, one of the most important sensory systems governing insect behavior, is a possible target for pest management. Therefore, in this study, we analyzed the antennal transcriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotropic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemosensory proteins. Moreover, differential gene expression analysis of virgin male and female antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odorant receptors in males. We also performed homology searches using the coding sequences built from previously proposed amino acid sequences derived from genomic data and identified additional chemosensory-related genes.


Asunto(s)
Antenas de Artrópodos/metabolismo , Escarabajos/genética , Genes de Insecto , Proteínas de Insectos/genética , RNA-Seq/métodos , Olfato/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Escarabajos/metabolismo , Regulación hacia Abajo/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Familia de Multigenes , Proteínas del Tejido Nervioso/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Regulación hacia Arriba/genética
17.
Sci Rep ; 11(1): 21816, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750398

RESUMEN

Predator avoidance is an important behavior that affects the degree of adaptation of organisms. We compared the DNA variation of one of the predator-avoidance behaviors, the recently extensively studied "death-feigning behavior", between the long strain bred for feigning death for a long time and the short strain bred for feigning death for a short time. To clarify how the difference in DNA sequences between the long and short strains corresponds to the physiological characteristics of the death-feigning duration at the transcriptome level, we performed comprehensive and comparative analyses of gene variants in Tribolium castaneum strains using DNA-resequencing. The duration of death feigning involves many gene pathways, including caffeine metabolism, tyrosine metabolism, tryptophan metabolism, metabolism of xenobiotics by cytochrome P450, longevity regulating pathways, and circadian rhythm. Artificial selection based on the duration of death feigning results in the preservation of variants of genes in these pathways in the long strain. This study suggests that many metabolic pathways and related genes may be involved in the decision-making process of anti-predator animal behavior by forming a network in addition to the tyrosine metabolic system, including dopamine, revealed in previous studies.


Asunto(s)
Genoma de los Insectos , Pérdida de Tono Postural/fisiología , Tribolium/genética , Tribolium/fisiología , Adaptación Fisiológica/genética , Animales , Reacción de Prevención/fisiología , Conducta Animal , Cafeína/metabolismo , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Longevidad/genética , Redes y Vías Metabólicas , Mapas de Interacción de Proteínas/genética , Análisis de Secuencia de ADN , Triptófano/metabolismo , Tirosina/metabolismo , Xenobióticos/metabolismo
19.
Insect Biochem Mol Biol ; 137: 103624, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333110

RESUMEN

The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the ß-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.


Asunto(s)
Bombyx/genética , Ojo Compuesto de los Artrópodos/química , Proteínas de Insectos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Mutación , Óvulo/química , Filogenia , Pigmentación/genética , Pigmentos Biológicos/análisis , Alineación de Secuencia
20.
Phytochemistry ; 189: 112825, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34119689

RESUMEN

Hydroxycinnamic acid amides (HCAAs) are involved in stress-induced defense in many plant species. Barley accumulates high concentrations of HCAAs irrespective of exogenous stressors, while other major cereals such as wheat and rice accumulate relatively low levels of HCAAs in intact tissues. The primary HCAA species in barley are biosynthesized by agmatine p-coumaroyltransferase (ACT), an N-acyltransferase of the BAHD superfamily. However, the molecular basis underlying barley's uniquely high HCAA accumulation has not been elucidated, and information regarding the structural details of BAHD N-acyltransferases is limited. Hence, we aimed to investigate the ACTs of family Poaceae. We isolated ACT (-like) genes, including those previously undescribed, and investigated their enzymatic and genetic features. All the identified enzymes belonged to clade IVa of the BAHD superfamily. The barley and wheat ACTs were further categorized, based on catalytic properties and primary structures, into ACT1 and ACT2 groups, the encoding loci of which are neighbors on the same chromosome. While all ACTs exhibited similar Km values for CoA-thioesters (acyl-group donors), members of the ACT1 group showed a distinctly higher affinity for agmatine (acyl-acceptor). Among the ACTs tested, an ACT isozyme in barley (HvACT1-1) showed the highest catalytic efficiency and transcript level, indicating that ACT regulates high-level HCAA accumulation in barley. For further enzymatic characterization of the ACTs, we crystalized wheat ACT2 (TaACT2) and determined its structure at 2.3 Å resolution. Structural alignment of TaACT2 and HvACT1-1 showed that the architectures of the substrate binding pockets were well conserved. However, the structure of a loop located at the entrance to acyl-acceptor binding site may be more flexible in TaACT2, which could be responsible for the lower affinity of TaACT2 to agmatine. Mutations of HvACT1-1 at Glu372 and Asp374 within one of the clade-IV specific motifs facing the deduced acyl-acceptor binding pocket caused significant catalytic deterioration toward agmatine both in Km and kcat, suggesting their key roles in acyl acceptor binding by the clade-IV enzymes. This study elucidated the molecular basis of how plants accumulate defensive specialized metabolites and provided insights into developing efficient and eco-friendly agricultural methods.


Asunto(s)
Amidas , Ácidos Cumáricos , Aciltransferasas/genética , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...