Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1054, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212363

RESUMEN

This retrospective cohort study aimed to develop and evaluate a machine-learning algorithm for predicting oliguria, a sign of acute kidney injury (AKI). To this end, electronic health record data from consecutive patients admitted to the intensive care unit (ICU) between 2010 and 2019 were used and oliguria was defined as a urine output of less than 0.5 mL/kg/h. Furthermore, a light-gradient boosting machine was used for model development. Among the 9,241 patients who participated in the study, the proportions of patients with urine output < 0.5 mL/kg/h for 6 h and with AKI during the ICU stay were 27.4% and 30.2%, respectively. The area under the curve (AUC) values provided by the prediction algorithm for the onset of oliguria at 6 h and 72 h using 28 clinically relevant variables were 0.964 (a 95% confidence interval (CI) of 0.963-0.965) and 0.916 (a 95% CI of 0.914-0.918), respectively. The Shapley additive explanation analysis for predicting oliguria at 6 h identified urine values, severity scores, serum creatinine, oxygen partial pressure, fibrinogen/fibrin degradation products, interleukin-6, and peripheral temperature as important variables. Thus, this study demonstrates that a machine-learning algorithm can accurately predict oliguria onset in ICU patients, suggesting the importance of oliguria in the early diagnosis and optimal management of AKI.


Asunto(s)
Lesión Renal Aguda , Oliguria , Humanos , Estudios Retrospectivos , Oliguria/diagnóstico , Enfermedad Crítica , Unidades de Cuidados Intensivos , Aprendizaje Automático , Lesión Renal Aguda/diagnóstico
2.
Res Synth Methods ; 14(5): 707-717, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37337729

RESUMEN

There are currently no abstract classifiers, which can be used for new diagnostic test accuracy (DTA) systematic reviews to select primary DTA study abstracts from database searches. Our goal was to develop machine-learning-based abstract classifiers for new DTA systematic reviews through an open competition. We prepared a dataset of abstracts obtained through database searches from 11 reviews in different clinical areas. As the reference standard, we used the abstract lists that required manual full-text review. We randomly splitted the datasets into a train set, a public test set, and a private test set. Competition participants used the training set to develop classifiers and validated their classifiers using the public test set. The classifiers were refined based on the performance of the public test set. They could submit as many times as they wanted during the competition. Finally, we used the private test set to rank the submitted classifiers. To reduce false exclusions, we used the Fbeta measure with a beta set to seven for evaluating classifiers. After the competition, we conducted the external validation using a dataset from a cardiology DTA review. We received 13,774 submissions from 1429 teams or persons over 4 months. The top-honored classifier achieved a Fbeta score of 0.4036 and a recall of 0.2352 in the external validation. In conclusion, we were unable to develop an abstract classifier with sufficient recall for immediate application to new DTA systematic reviews. Further studies are needed to update and validate classifiers with datasets from other clinical areas.


Asunto(s)
Pruebas Diagnósticas de Rutina , Aprendizaje Automático , Humanos , Bases de Datos Factuales
3.
Sci Rep ; 12(1): 12912, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902633

RESUMEN

Machine learning can predict outcomes and determine variables contributing to precise prediction, and can thus classify patients with different risk factors of outcomes. This study aimed to investigate the predictive accuracy for mortality and length of stay in intensive care unit (ICU) patients using machine learning, and to identify the variables contributing to the precise prediction or classification of patients. Patients (n = 12,747) admitted to the ICU at Chiba University Hospital were randomly assigned to the training and test cohorts. After learning using the variables on admission in the training cohort, the area under the curve (AUC) was analyzed in the test cohort to evaluate the predictive accuracy of the supervised machine learning classifiers, including random forest (RF) for outcomes (primary outcome, mortality; secondary outcome, length of ICU stay). The rank of the variables that contributed to the machine learning prediction was confirmed, and cluster analysis of the patients with risk factors of mortality was performed to identify the important variables associated with patient outcomes. Machine learning using RF revealed a high predictive value for mortality, with an AUC of 0.945 (95% confidence interval [CI] 0.922-0.977). In addition, RF showed high predictive value for short and long ICU stays, with AUCs of 0.881 (95% CI 0.876-0.908) and 0.889 (95% CI 0.849-0.936), respectively. Lactate dehydrogenase (LDH) was identified as a variable contributing to the precise prediction in machine learning for both mortality and length of ICU stay. LDH was also identified as a contributing variable to classify patients into sub-populations based on different risk factors of mortality. The machine learning algorithm could predict mortality and length of stay in ICU patients with high accuracy. LDH was identified as a contributing variable in mortality and length of ICU stay prediction and could be used to classify patients based on mortality risk.


Asunto(s)
Algoritmos , Unidades de Cuidados Intensivos , Aprendizaje Automático , Mortalidad , Área Bajo la Curva , Humanos , Tiempo de Internación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...