Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(62): e202201940, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36073840

RESUMEN

The photocyclodimerization of 2-anthracenecarboxylic acid has been extensively studied as a model reaction of asymmetric photochemistry. So far, numerous chiral environments have been employed to control this photoreaction, while the scope of photoreactants has been limited only to 2-anthracenecarboxylic acid and its simple esters and amides. Here, we developed a systematic series of photoreactants (2 a-d) by introducing various substituents to 2-anthracenecarboxylic acid, which showed different reactivities and selectivities depending on the substituents. By using the photoreactants 2 a-d, we evaluated the performance of a chiral environment composed of an amphiphilic amino alcohol (1), where the photocyclodimerization of 2 a-d generally proceeded in excellent regio- and enantioselectivities (71-98 % regio ratio, 76-86 % ee). Furthermore, by reacting 2 a and 2 b together in the chiral environment of 1, we succeeded in the first stereocontrolled cross-photocyclodimerization between two prochiral anthracenes (58 % chemo ratio, 83 % regio ratio, 90 % ee).


Asunto(s)
Amino Alcoholes , Antracenos , Estereoisomerismo , Dimerización , Ciclización , Antracenos/química
2.
Chirality ; 34(2): 295-305, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792805

RESUMEN

Chiral amphiphiles are useful for controlling the structures and properties of supramolecular assemblies, but their stereocontrolled synthesis is generally difficult, because their long alkyl chains tend to bring unfavorable effects on the solubility, reactivity, and crystallinity of molecules. Typical examples are amphiphilic 1,2-amino alcohols (S)-1 and (1S,2S)-2 developed by our group, which were known to serve as chiral reaction media for controlling the stereochemistry of asymmetric photoreactions. We previously developed synthetic schemes for these 1,2-amino alcohols, but their synthetic efficiencies were unsatisfactory (13 steps with 2% overall yield for (S)-1; eight steps with 8% yield for (1S,2S)-2). As the main reason of such low efficiencies, the stereocontrolling methods we previously employed (diastereomer-salt crystallization for (S)-1; stereoselective reactions for (1S,2S)-2) were not ideal. Here, we report highly improved synthetic schemes for (S)-1 and (1S,2S)-2 based on the enantioselective high performance liquid chromatography (HPLC) separation of intermediates in preparative scales. Compared with the previous schemes, the new schemes are advantageous in fewer number of steps, higher overall yield, and lower risk of racemization (seven steps with 15% overall yield for (S)-1; seven steps with 26% overall yield for (1S,2S)-2).


Asunto(s)
Amino Alcoholes , Amino Alcoholes/química , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo
3.
Angew Chem Int Ed Engl ; 60(3): 1528-1534, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33058482

RESUMEN

The longest bottlebrush polymers reported so far (up to 7 µm in length) were synthesized in two steps from a norbornene derivative bearing two 2-bromoisobutylate moieties (NB). The key to this achievement is the excellent reactivity of NB in ring opening metathesis polymerization, which proceeded in a well-controlled manner with quantitative conversion of NB for monomer-initiator ratios ranging up to 10,000. The resultant polymer derived from NB was readily converted to various bottlebrush polymers in a divergent synthetic route by grafting vinyl monomers from the 2-bromoisobutylate units in NB via atom transfer radical polymerization. The structure of the ultra-long bottlebrush polymer was directly observed using atomic force microscopy.

4.
Nat Commun ; 11(1): 2311, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385267

RESUMEN

Since various helical supramolecular polymers became available, their application to molecular chirality recognition have been anticipated but not extensively studied. So far, only a few examples of chiral reactions have been reported, but none for chiral separation. Here, we report the application of a helical supramolecular polymer to the enantio-separation of chiral guest molecules. The monomer of this supramolecular polymer is the salt-pair of a dendritic carboxylic acid with an enantiopure amino alcohol. In an apolar solvent, this salt-pair stacks via hydrogen bonds to form a helical polymer. In conjunction with this carboxylic acid, various amino alcohols afford supramolecular polymers, whose helical handedness is determined by the stereochemistry of the amino alcohols. When two salts with the same chirality are mixed, they undergo copolymerization, while those with opposite chirality do not. Owing to this stereoselective copolymerizability, the helical supramolecular polymer could bias the enantiomeric composition of chiral amino alcohols.

5.
Chembiochem ; 19(18): 1922-1926, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29969169

RESUMEN

Mixtures of a phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, DPPC) and a sodium-cholate-derived surfactant (SC-C5 ) at room temperature formed phospholipid bilayer fragments that were edge-stabilized by SC-C5 : so-called "bicelles". Because the bilayer melting point of DPPC (41 °C) is above room temperature and because SC-C5 has an exceptionally low critical micelle concentration (<0.5 mm), the bicelles are kinetically frozen at room temperature. Consequently, they exist even when the mixture is diluted to a concentration of 0.04 wt %. In addition, the lateral size of the bicelles can be fine-tuned by altering the molar ratio of DPPC to SC-C5 . On heating to ≈37 °C, the bicelles transformed into micelles composed of DPPC and SC-C5 . By taking advantage of the dilution tolerance, size tunability, and thermoresponsiveness, we demonstrated in vitro drug delivery based on use of the bicelles as carriers, which suggests their potential utility in transdermal drug delivery.


Asunto(s)
Preparaciones de Acción Retardada/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Tensoactivos/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Línea Celular , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Cinética , Micelas , Temperatura
6.
Chemphyschem ; 17(23): 3916-3922, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27553850

RESUMEN

Five novel surfactants were prepared by modifying the three hydroxy groups of sodium cholate with triethylene glycol chains endcapped with an amide (SC-C1 , SC-n C4 , and SC-n C5 ) or a carbamoyl group (SC-On C4 and SC-Ot C4 ). The phase behavior of aqueous mixtures of these surfactants with 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) was systematically studied by 31 P NMR spectroscopy. The surfactants endcapped with carbamate groups (SC-On C4 and SC-Ot C4 ) formed magnetically alignable bicelles over unprecedentedly wide ranges of conditions, in terms of temperature (from 21-23 to >90 °C), lipid/surfactant ratio (from 5 to 8), total lipid content (5-20 wt %), and lipid type [DMPC, 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC), or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)]. In conjunction with appropriate phospholipids, the carbamate-endcapped surfactants afforded unique bicelles, characterized by exceptional thermal stabilities (from 0 to >90 °C), biomimetic lipid compositions (DMPC/POPC=25:75 to 50:50), and extremely large 2 H quadrupole splittings (up to 71 Hz).


Asunto(s)
Ácido Cólico/química , Campos Magnéticos , Tensoactivos/química , Micelas , Estructura Molecular , Tensoactivos/síntesis química
8.
Angew Chem Int Ed Engl ; 54(45): 13284-8, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26373898

RESUMEN

In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models.


Asunto(s)
Fosfolípidos/química , Tensoactivos/química , Temperatura , Cinética , Espectroscopía de Resonancia Magnética
9.
Nat Commun ; 6: 8418, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416086

RESUMEN

Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm(2)). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure.

10.
J Am Chem Soc ; 135(41): 15650-5, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24050260

RESUMEN

ABA-triblock copolyethers 1a-1c as linear polymeric binders, in combination with clay nanosheets (CNSs), afford high-water-content moldable supramolecular hydrogels with excellent mechanical properties by constructing a well-developed crosslinked network in water. The linear binders carry in their terminal A blocks guanidinium ion (Gu(+)) pendants for adhesion to the CNS surface, while their central B block comprises poly(ethylene oxide) (PEO) that serves as a flexible linker for adhered CNSs. Although previously reported dendritic binder 2 requires multistep synthesis and purification, the linear binders can be obtained in sizable quantities from readily available starting materials by controlled polymerization. Together with dendritic reference 2, the modular nature of compounds 1a-1c with different numbers of Gu(+) pendants and PEO linker lengths allowed for investigating how their structural parameters affect the gel network formation and hydrogel properties. The newly obtained hydrogels are mechanically as tough as that with 2, although the hydrogelation takes place more slowly. Irrespective of which binder is used, the supramolecular gel network has a shape memory feature upon drying followed by rewetting, and the gelling water can be freely replaced with ionic liquids and organic fluids, affording novel clay-reinforced iono- and organogels, respectively.

11.
J Am Chem Soc ; 135(17): 6407-10, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23597022

RESUMEN

A metastable liquid crystal (LC) was found to serve as a time-responsive reaction medium, in which the enantioselectivity of a photoreaction was perfectly switched through isothermal annealing of the reaction system. When the LC salt of an enantiopure amine with a photoreactive acid was irradiated with UV/vis light, in situ photodimerization of the acid moiety proceeded smoothly to afford the (+)-isomer of the photodimer with high enantioselectivity (+86% ee). In contrast, photoirradiation of an aged sample, isothermally annealed for 20 h, gave predominantly the (-)-isomer (-94% ee). Systematic studies revealed that the reversal in selectivity originated from metastability of the LC system, which gradually transformed into a crystalline phase during annealing. This finding demonstrates the potential use of metastable aggregates as dynamic time-responsive media, reminiscent of biological systems.

12.
Chemistry ; 17(52): 14752-62, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22147685

RESUMEN

Cross-linked polymers prepared by the in-situ polymerization of liquid-crystalline salts were found to work as solid-state hosts with a flexible framework. As a component of such hosts, four kinds of polymerizable amphiphilic carboxylic acids bearing alkyl chains with acryloyloxy (A), dienyl (D), and/or nonreactive (N) chain ends (monomeric carboxylic acids; M(AAA), M(ANA), M(DDD), and M(DND)) were used. The carboxylic acids were mixed with an equimolar amount of a template unit, (1R,2S)-norephedrine (guest amine; G(RS)), to form the corresponding salts. Every salt exhibited a rectangular columnar LC phase at room temperature, which was successfully polymerized by (60)Co γ-ray-induced polymerization without serious structural disordering to afford the salt of cross-linked carboxylic acid (polymeric carboxylic acid; P(AAA), P(ANA), P(DDD), and P(DND)) with G(RS) . Owing to the noncovalency of the interactions between the polymer framework P and the template G(RS), the cross-linked polymers could reversibly release and capture a meaningful amount of G(RS). In response to the desorption and adsorption of G(RS), the cross-linked polymers dramatically switched their nanoscale structural order. A systematic comparison of the polymers revealed that the choice of polymerizable groups has a significant influence on the properties of the resultant polymer frameworks as solid-state hosts. Among these polymers, P(DDD) was found to be an excellent solid-state host, in terms of guest-releasing/capturing ability, guest-recognition ability, durability to repetitive usage, and unique structural switching mode.

13.
J Am Chem Soc ; 132(49): 17435-46, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21090712

RESUMEN

Three kinds of enantiopure amphiphilic amino alcohols (1a-c) were newly synthesized, of which the stereochemistry of the stereogenic carbons adjacent to the amino (C2) and hydroxy (C1) groups was systematically varied. By using these amino alcohols and four photoreactive carboxylic acids, 12 kinds of salts were prepared. The structure and thermal behavior of the salts were thoroughly investigated by various techniques, which revealed that the stereochemistry of the amino alcohol unit has significant effects on the properties of the salts; the salts of 1a with (1R,2S)-configuration did not exhibit any liquid crystal (LC) phase but showed high crystallinity, whereas 1b and 1c with (1S,2S)- and (1S)-configurations, respectively, generally afforded stable LC salts with smectic structure(s). Within the matrix of these amphiphilic salts, the in situ photodimerizations of 2-anthracenecarboxylic acid (2c) and 1-anthracenecarboxylic acid (2d) were conducted by the irradiation with UV/vis light (500 W, a high-pressure mercury arc lamp, >380 nm). Concerning reactivity and regio-/diastereo-/enantioselectivities, the LC phases were found to be superior to isotropic and crystalline phases. For the two substrates 2c and 2d, every LC phase promoted the photodimerization with unprecedentedly high head-to-head selectivity. Particularly in the case of 2c, diastereoselecitivity (syn(HH) vs anti(HH)) could be rationally controlled by the choice of the amino alcohol unit and mesophase (syn(HH):anti(HH) = 61:37 to 26:72). Moreover, one of the LC phases exhibited by 1b·2c afforded the anti(HH)-dimer of 2c with excellent enantioselectivity (up to 86% ee). On the basis of the hypothesis that the present photochemical outcome arises from the preorientation of the substrates, a preliminary structural model of these LCs was proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...