Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2318794121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442163

RESUMEN

Nuclear factor κB (NF-κB) is activated by various inflammatory and infectious molecules and is involved in immune responses. It has been elucidated that ADP-ß-D-manno-heptose (ADP-Hep), a metabolite in gram-negative bacteria, activates NF-κB through alpha-kinase 1 (ALPK1)-TIFA-TRAF6 signaling. ADP-Hep stimulates the kinase activity of ALPK1 for TIFA phosphorylation. Complex formation between phosphorylation-dependent TIFA oligomer and TRAF6 promotes the polyubiquitination of TRAF6 for NF-κB activation. TIFAB, a TIFA homolog lacking a phosphorylation site and a TRAF6 binding motif, is a negative regulator of TIFA-TRAF6 signaling and is implicated in myeloid diseases. TIFAB is indicated to regulate TIFA-TRAF6 signaling through interactions with TIFA and TRAF6; however, little is known about its biological function. We demonstrated that TIFAB forms a complex not with the TIFA dimer, an intrinsic form of TIFA involved in NF-κB activation, but with monomeric TIFA. The structural analysis of the TIFA/TIFAB complex and the biochemical and cell-based analyses showed that TIFAB forms a stable heterodimer with TIFA, inhibits TIFA dimer formation, and suppresses TIFA-TRAF6 signaling. The resultant TIFA/TIFAB complex is a "pseudo-TIFA dimer" lacking the phosphorylation site and TRAF6 binding motif in TIFAB and cannot form the orderly structure as proposed for the phosphorylated TIFA oligomer involved in NF-κB activation. This study elucidated the molecular and structural basis for the regulation of TIFA-TRAF6 signaling by TIFAB.


Asunto(s)
FN-kappa B , Factor 6 Asociado a Receptor de TNF , Factor 6 Asociado a Receptor de TNF/genética , Transducción de Señal , Inmunidad Innata , Fosforilación , Polímeros
2.
FEBS Lett ; 597(13): 1770-1778, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36914375

RESUMEN

Human MutT homolog 1 (MTH1), also known as Nudix-type motif 1 (NUDT1), hydrolyzes 8-oxo-dGTP and 2-oxo-dATP with broad substrate recognition and has attracted attention in anticancer therapeutics. Previous studies on MTH1 have proposed that the exchange of the protonation state between Asp119 and Asp120 is essential for the broad substrate recognition of MTH1. To understand the relationship between protonation states and substrate binding, we determined the crystal structures of MTH1 at pH 7.7-9.7. With increasing pH, MTH1 gradually loses its substrate-binding ability, indicating that Asp119 is deprotonated at pH 8.0-9.1 in 8-oxo-dGTP recognition and Asp120 is deprotonated at pH 8.6-9.7 in 2-oxo-dATP recognition. These results confirm that MTH1 recognizes 8-oxo-dGTP and 2-oxo-dATP by exchanging the protonation state between Asp119 and Asp120 with higher pKa .


Asunto(s)
Monoéster Fosfórico Hidrolasas , Pirofosfatasas , Humanos , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Hidrolasas Nudix
3.
Proc Natl Acad Sci U S A ; 119(21): e2203118119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594391

RESUMEN

Escherichia coli MutT prevents mutations by hydrolyzing mutagenic 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) in the presence of Mg2+ or Mn2+ ions. MutT is one of the most studied enzymes in the nucleoside diphosphate-linked moiety X (Nudix) hydrolase superfamily, which is widely distributed in living organisms. However, the catalytic mechanisms of most Nudix hydrolases, including two- or three-metal-ion mechanisms, are still unclear because these mechanisms are proposed using the structures mimicking the reaction states, such as substrate analog complexes. Here, we visualized the hydrolytic reaction process of MutT by time-resolved X-ray crystallography using a biological substrate, 8-oxo-dGTP, and an active metal ion, Mn2+. The reaction was initiated by soaking MutT crystals in a MnCl2 solution and stopped by freezing the crystals at various time points. In total, five types of intermediate structures were refined by investigating the time course of the electron densities in the active site as well as the anomalous signal intensities of Mn2+ ions. The structures and electron densities show that three Mn2+ ions bind to the Nudix motif of MutT and align the substrate 8-oxo-dGTP for catalysis. Accompanied by the coordination of the three Mn2+ ions, a water molecule, bound to a catalytic base, forms a binuclear Mn2+ center for nucleophilic substitution at the ß-phosphorus of 8-oxo-dGTP. The reaction condition using Mg2+ also captured a structure in complex with three Mg2+ ions. This study provides the structural details essential for understanding the three-metal-ion mechanism of Nudix hydrolases and proposes that some of the Nudix hydrolases share this mechanism.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Mutágenos , Monoéster Fosfórico Hidrolasas/metabolismo , Pirofosfatasas/metabolismo , Hidrolasas Nudix
4.
J Med Chem ; 64(14): 10019-10026, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34242022

RESUMEN

The emergence and rapid spread of carbapenem-resistant pathogens producing metallo-ß-lactamases such as IMP-1 and NDM-1 have been of great concern in the global clinical setting. The X-ray crystal structures of IMP-1 from Serratia marcescens and its single mutant, D120E, in complexes with citrate were determined at resolutions of 2.00 and 1.85 Å, respectively. Two crystal structures indicate that a single mutation at position 120 caused a structural change around Zn1, where the geometry changes from a tetrahedron in the native IMP-1 to a square pyramid in D120E. Based on these two complex structures, the authors synthesized citrate monobenzyl ester 1 to evaluate the structural requirement for the inhibitory activity against IMP-1 and compared the inhibitory activities with nonsubstituted citrate. The introduction of a benzyl group into citrate enhanced the inhibitory activity in comparison to citrate (IC50 > 5 mM).


Asunto(s)
Compuestos de Bencilo/farmacología , Ácido Cítrico/farmacología , Ésteres/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Compuestos de Bencilo/química , Ácido Cítrico/química , Relación Dosis-Respuesta a Droga , Ésteres/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad
5.
J Biochem ; 170(3): 379-387, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34185078

RESUMEN

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by non-enzymatic reaction between reducing-sugar and Arg/Lys in proteins and are involved in various diabetic complications. GA-pyridine is derived from glycolaldehyde and is one of the most cytotoxic AGEs. Here, we established a single-chain Fv (scFv) antibody against GA-pyridine, 73MuL9-scFv, and examined the details of its specificity and antigen recognition by using various techniques involving biophysics, chemical biology and structural biology. We also synthesized several compounds that differ slightly in regard to the position and number of GA-pyridine substituent groups, and revealed that GA-pyridine was specifically bound to 73MuL9-scFv. Thermodynamic analysis revealed that the association of GA-pyridine to 73MuL9-scFv was an exothermic and enthalpy driven reaction, and thus that the antigen recognition involved multiple specific interactions. Crystallographic analysis of the Fv fragment of 73MuL9-scFv revealed that several CH-π and hydrogen bond interactions took place between the Fv-fragment and GA-pyridine, which was consistent with the results of thermodynamic analysis. Further studies using 73MuL9-scFv as a tool to clarify the relevance of GA-pyridine to diabetic complications are warranted.


Asunto(s)
Productos Finales de Glicación Avanzada/inmunología , Piridinas/inmunología , Anticuerpos de Cadena Única/metabolismo , Acetaldehído/análogos & derivados , Acetaldehído/química , Acetaldehído/inmunología , Secuencia de Aminoácidos , Antígenos/química , Antígenos/metabolismo , Biofisica , Cristalografía/métodos , Productos Finales de Glicación Avanzada/química , Humanos , Enlace de Hidrógeno , Piridinas/química , Anticuerpos de Cadena Única/química , Termodinámica
6.
Nucleic Acids Res ; 49(12): 7154-7163, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34142156

RESUMEN

Mammalian MutY homologue (MUTYH) is an adenine DNA glycosylase that excises adenine inserted opposite 8-oxoguanine (8-oxoG). The inherited variations in human MUTYH gene are known to cause MUTYH-associated polyposis (MAP), which is associated with colorectal cancer. MUTYH is involved in base excision repair (BER) with proliferating cell nuclear antigen (PCNA) in DNA replication, which is unique and critical for effective mutation-avoidance. It is also reported that MUTYH has a Zn-binding motif in a unique interdomain connector (IDC) region, which interacts with Rad9-Rad1-Hus1 complex (9-1-1) in DNA damage response, and with apurinic/apyrimidinic endonuclease 1 (APE1) in BER. However, the structural basis for the BER pathway by MUTYH and its interacting proteins is unclear. Here, we determined the crystal structures of complexes between mouse MUTYH and DNA, and between the C-terminal domain of mouse MUTYH and human PCNA. The structures elucidated the repair mechanism for the A:8-oxoG mispair including DNA replication-coupled repair process involving MUTYH and PCNA. The Zn-binding motif was revealed to comprise one histidine and three cysteine residues. The IDC, including the Zn-binding motif, is exposed on the MUTYH surface, suggesting its interaction modes with 9-1-1 and APE1, respectively. The structure of MUTYH explains how MAP mutations perturb MUTYH function.


Asunto(s)
ADN Glicosilasas/química , Adenina , Poliposis Adenomatosa del Colon/genética , Secuencias de Aminoácidos , Animales , ADN/química , ADN Glicosilasas/genética , Reparación del ADN , Replicación del ADN , Guanina/análogos & derivados , Humanos , Ratones , Modelos Moleculares , Mutación , Antígeno Nuclear de Célula en Proliferación/química , Zinc
8.
J Virol ; 94(19)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32611758

RESUMEN

HIV-1 often acquires drug-resistant mutations in spite of the benefits of antiretroviral therapy (ART). HIV-1 integrase (IN) is essential for the concerted integration of HIV-1 DNA into the host genome. IN further contributes to HIV-1 RNA binding, which is required for HIV-1 maturation. Non-catalytic-site integrase inhibitors (NCINIs) have been developed as allosteric IN inhibitors, which perform anti-HIV-1 activity by a multimodal mode of action such as inhibition of the IN-lens epithelium-derived growth factor (LEDGF)/p75 interaction in the early stage and disruption of functional IN multimerization in the late stage of HIV-1 replication. Here, we show that IN undergoes an adaptable conformational change to escape from NCINIs. We observed that NCINI-resistant HIV-1 variants have accumulated 4 amino acid mutations by passage 26 (P26) in the IN-encoding region. We employed high-performance liquid chromatography (HPLC), thermal stability assays, and X-ray crystallographic analysis to show that some amino acid mutations affect the stability and/or dimerization interface of the IN catalytic core domains (CCDs), potentially resulting in the severely decreased multimerization of full-length IN proteins (IN undermultimerization). This undermultimerized IN via NCINI-related mutations was stabilized by HIV-1 RNA and restored to the same level as that of wild-type HIV-1 in viral particles. Recombinant HIV-1 clones with IN undermultimerization propagated similarly to wild-type HIV-1. Our study revealed that HIV-1 can eventually counteract NCINI-induced IN overmultimerization by IN undermultimerization as one of the escape mechanisms. Our findings provide information on the understanding of IN multimerization with or without HIV-1 RNA and may influence the development of anti-HIV-1 strategies.IMPORTANCE Understanding the mechanism of HIV-1 resistance to anti-HIV-1 drugs could lead to the development of novel drugs with increased efficiency, resulting in more effective ART. ART composed of more potent and long-acting anti-HIV-1 drugs can greatly improve drug adherence and also provide HIV-1 prevention such as preexposure prophylaxis. NCINIs with a multimodal mode of action exert potent anti-HIV-1 effects through IN overmultimerization during HIV-1 maturation. However, HIV-1 can acquire some mutations that cause IN undermultimerization to alleviate NCINI-induced IN overmultimerization. This undermultimerized IN was efficiently stabilized by HIV-1 RNA and restored to the same level as that of wild-type HIV-1. Our findings revealed that HIV-1 eventually acquires such a conformational escape reaction to overcome the unique NCINI actions. The investigation into drug-resistant mutations associated with HIV-1 protein multimerization may facilitate the elucidation of its molecular mechanism and functional multimerization, allowing us to develop more potent anti-HIV-1 drugs and unique treatment strategies.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Reacción de Fuga/efectos de los fármacos , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Regulación Alostérica/genética , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , VIH-1/genética , VIH-1/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Mutación , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes , Factores de Transcripción , Virión/química , Virión/genética , Replicación Viral/efectos de los fármacos
9.
Sci Rep ; 10(1): 5152, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198460

RESUMEN

TRAF-interacting protein with a forkhead-associated (FHA) domain (TIFA), originally identified as an adaptor protein of TRAF6, has recently been shown to be involved in innate immunity, induced by a pathogen-associated molecular pattern (PAMP). ADP-ß-D-manno-heptose, a newly identified PAMP, binds to alpha-kinase 1 (ALPK1) and activates its kinase activity to phosphorylate TIFA. Phosphorylation triggers TIFA oligomerisation and formation of a subsequent TIFA-TRAF6 oligomeric complex for ubiquitination of TRAF6, eventually leading to NF-κB activation. However, the structural basis of TIFA-dependent TRAF6 signalling, especially oligomer formation of the TIFA-TRAF6 complex remains unknown. In the present study, we determined the crystal structures of mouse TIFA and two TIFA mutants-Thr9 mutated to either Asp or Glu to mimic the phosphorylation state-to obtain the structural information for oligomer formation of the TIFA-TRAF6 complex. Crystal structures show the dimer formation of mouse TIFA to be similar to that of human TIFA, which was previously reported. This dimeric structure is consistent with the solution structure obtained from small angle X-ray scattering analysis. In addition to the structural analysis, we examined the molecular assembly of TIFA and the TIFA-TRAF6 complex by size-exclusion chromatography, and suggested a model for the TIFA-TRAF6 signalling complex.


Asunto(s)
Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ratones , FN-kappa B/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitinación
10.
Nat Commun ; 9(1): 2833, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026585

RESUMEN

SP7/Osterix (OSX) is a master regulatory transcription factor that activates a variety of genes during differentiation of osteoblasts. However, the influence of post-translational modifications on the regulation of its transactivation activity is largely unknown. Here, we report that sirtuins, which are NAD(+)-dependent deacylases, regulate lysine deacylation-mediated transactivation of OSX. Germline Sirt7 knockout mice develop severe osteopenia characterized by decreased bone formation and an increase of osteoclasts. Similarly, osteoblast-specific Sirt7 knockout mice showed attenuated bone formation. Interaction of SIRT7 with OSX leads to the activation of transactivation by OSX without altering its protein expression. Deacylation of lysine (K) 368 in the C-terminal region of OSX by SIRT7 promote its N-terminal transactivation activity. In addition, SIRT7-mediated deacylation of K368 also facilitates depropionylation of OSX by SIRT1, thereby increasing OSX transactivation activity. In conclusion, our findings suggest that SIRT7 has a critical role in bone formation by regulating acylation of OSX.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Lisina/metabolismo , Osteoblastos/metabolismo , Sirtuinas/genética , Factor de Transcripción Sp7/genética , Activación Transcripcional , Acilación , Animales , Densidad Ósea , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular , Línea Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis/genética , Transducción de Señal , Sirtuinas/deficiencia , Factor de Transcripción Sp7/metabolismo
11.
J Mol Biol ; 430(8): 1189-1200, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29481839

RESUMEN

Anammox is a bacterial energy metabolic process that forms N2 gas from nitrite and ammonium ions. The enzymatic mechanisms of anammox have been gradually revealed; however, the electron transport chain in anammox bacteria remains poorly understood. In the present study, we purified and characterized two low-molecular-weight c-type cytochromes from an enriched culture of the anammox bacterium strain, KSU-1. Their genes, KSU1_B0428 and KSU1_C0855, were identified in the KSU-1 genome, and their recombinant proteins were characterized. KSU1_B0428 is a typical c-type cytochrome with a His/Met coordinated heme, acting as an electron transfer protein. In contrast, KSU1_C0855 could not be assigned as a known cytochrome and its heme was suggested to have an uncommon axial ligand set. Crystal structural analyses of C0855 clearly showed that its heme iron is coordinated by His15 as a fifth ligand. Moreover, the sixth coordination site is occupied by the aromatic ring of Tyr60, and an unassignable electron density that is inseparable with that of aromatic carbon of Tyr60 was found. The additional electron density was assigned to an O atom by molecular mass analyses. Therefore, Tyr60 would be chemically modified to 3,4-dihydroxyphenylalanine and bound to the Fe atom. We revealed that an anammox bacterium strain KSU-1 expresses a novel cytochrome c having an unprecedented His/3,4-dihydroxyphenylalanine coordinating heme. The expression of the novel c-type cytochrome might be required for the redox reaction of the anammox process.


Asunto(s)
Bacterias/metabolismo , Citocromos c/química , Citocromos c/genética , Compuestos de Amonio/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citocromos c/metabolismo , Dihidroxifenilalanina , Transporte de Electrón , Hemo/metabolismo , Modelos Moleculares , Nitritos/metabolismo , Oxidación-Reducción , Conformación Proteica
12.
J Biol Chem ; 292(7): 2785-2794, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28035004

RESUMEN

The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells. Unlike Escherichia coli MutT, which shows high substrate specificity for 8-oxoguanine nucleotides, hMTH1 has broad substrate specificity for oxidized nucleotides, including 8-oxo-dGTP and 2-oxo-dATP. However, the reason for this broad substrate specificity remains unclear. Here, we determined crystal structures of hMTH1 in complex with 8-oxo-dGTP or 2-oxo-dATP at neutral pH. These structures based on high quality data showed that the base moieties of two substrates are located on the similar but not the same position in the substrate binding pocket and adopt a different hydrogen-bonding pattern, and both triphosphate moieties bind to the hMTH1 Nudix motif (i.e. the hydrolase motif) similarly and align for the hydrolysis reaction. We also performed kinetic assays on the substrate-binding Asp-120 mutants (D120N and D120A), and determined their crystal structures in complex with the substrates. Analyses of bond lengths with high-resolution X-ray data and the relationship between the structure and enzymatic activity revealed that hMTH1 recognizes the different oxidized nucleotides via an exchange of the protonation state at two neighboring aspartate residues (Asp-119 and Asp-120) in its substrate binding pocket. To our knowledge, this mechanism of broad substrate recognition by enzymes has not been reported previously and may have relevance for anticancer drug development strategies targeting hMTH1.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Humanos , Cinética , Mutación , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Conformación Proteica , Especificidad por Sustrato
13.
J Virol ; 90(5): 2180-94, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581995

RESUMEN

UNLABELLED: We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1(WT)), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 µM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRV(R) P51); the three compounds remained active against HIV-1DRV(R) P51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE: Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRV(R) ) has recently been observed in vivo and in vitro. Here, we identified three novel HIV-1 protease inhibitors (PIs) containing a tetrahydropyrano-tetrahydrofuran (Tp-THF) moiety with a C-5 hydroxyl (GRL-015, -085, and -097) which potently suppress the replication of HIVDRV(R) . Moreover, the emergence of HIV-1 strains resistant to the three compounds was considerably delayed compared to the case of DRV. The C-5 hydroxyl formed a strong hydrogen bonding interaction with the carbonyl oxygen atom of Gly48 of protease as examined in the structural analyses. Interestingly, a compound with Tp-THF lacking the hydroxyl moiety substantially decreased activity against HIVDRV(R) . The three novel compounds should be further developed as potential drugs for treating individuals harboring wild-type and multi-PI-resistant HIV variants as well as HIVDRV(R) .


Asunto(s)
Darunavir/farmacología , Farmacorresistencia Viral , Furanos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Anciano , Supervivencia Celular/efectos de los fármacos , Furanos/química , Furanos/aislamiento & purificación , Furanos/toxicidad , Infecciones por VIH/virología , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/aislamiento & purificación , Inhibidores de la Proteasa del VIH/toxicidad , VIH-1/aislamiento & purificación , VIH-1/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Estructura Molecular , Mutación
14.
FEBS Lett ; 589(19 Pt B): 2675-82, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26318717

RESUMEN

Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding. The stoUDG-DNA complex model indicated that Leu169, Tyr170, and Asn171 in the loop are involved in DNA intercalation. Mutational analysis showed that Tyr170 is critical for substrate DNA recognition. These results indicate that Tyr170 occupies the intercalation site formed after the structural change of the leucine-intercalation loop required for the catalysis.


Asunto(s)
ADN/metabolismo , Sulfolobus/enzimología , Tirosina/metabolismo , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Uracilo/metabolismo , Uracil-ADN Glicosidasa/genética
15.
Biol Pharm Bull ; 38(1): 96-101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25744464

RESUMEN

IMP-2, a subclass B1 metallo-ß-lactamase (MBL), is a Zn(II)-containing hydrolase. This hydrolase, involved in antibiotic resistance, catalyzes the hydrolysis of the C-N bond of the ß-lactam ring in ß-lactam antibiotics such as benzylpenicillin and imipenem. The crystal structure of IMP-2 MBL from Acinetobacter spp. was determined at 2.3 Å resolution. This structure is analogous to that of subclass B1 MBLs such as IMP-1 and VIM-2. Comparison of the structures of IMP-1 and IMP-2, which have an 85% amino acid identity, suggests that the amino acid substitution at position 68 on a ß-strand (ß3) (Pro in IMP-1 versus Ser in IMP-2) may be a staple factor affecting the flexibility of loop 1 (comprising residues at positions 60-66; EVNGWGV). In the IMP-1 structure, loop 1 adopts an open, disordered conformation. On the other hand, loop 1 of IMP-2 forms a closed conformation in which the side chain of Trp64, involved in substrate binding, is oriented so as to cover the active site, even though there is an acetate ion in the active site of both IMP-1 and IMP-2. Loop 1 of IMP-2 has a more flexible structure in comparison to IMP-1 due to having a Ser residue instead of the Pro residue at position 68, indicating that this difference in sequence may be a trigger to induce a more flexible conformation in loop 1.


Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/química , beta-Lactamasas/química , Dominio Catalítico , Cristalización , Conformación Proteica , Difracción de Rayos X
16.
Artículo en Inglés | MEDLINE | ID: mdl-23295485

RESUMEN

Human MTH1 (hMTH1) is an enzyme that hydrolyses several oxidized purine nucleoside triphosphates to their corresponding nucleoside monophosphates. Crystallographic studies have shown that the accurate mode of interaction between 8-oxoguanine and hMTH1 cannot be understood without determining the positions of the H atoms, as can be observed in neutron and/or ultrahigh-resolution X-ray diffraction studies. The hMTH1 protein prepared in the original expression system from Escherichia coli did not appear to be suitable for obtaining high-quality crystals because the hMTH1 protein had heterogeneous N-termini of Met1 and Gly2 that resulted from N-terminal Met excision by methionine aminopeptidase from the E. coli host. To obtain homogeneous hMTH1, the Gly at the second position was replaced by Lys. As a result, mutant hMTH1 protein [hMTH1(G2K)] with a homogeneous N-terminus could be prepared and high-quality crystals which diffracted to near 1.1 Šresolution using synchrotron radiation were produced. The new crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 46.36, b = 47.58, c = 123.89 Å.


Asunto(s)
Enzimas Reparadoras del ADN/química , Monoéster Fosfórico Hidrolasas/química , Sustitución de Aminoácidos , Cristalización/métodos , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/aislamiento & purificación , Glicina/química , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Humanos , Lisina/química , Mutación , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Conformación Proteica
17.
Biophysics (Nagoya-shi) ; 9: 31-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27493538

RESUMEN

Nucleotidyl-transfer reaction catalyzed by DNA polymerase is a fundamental enzymatic reaction for DNA synthesis. Until now, a number of structural and kinetic studies on DNA polymerases have proposed a two-metalion mechanism of the nucleotidyl-transfer reaction. However, the actual reaction process has never been visualized. Recently, we have followed the nucleotidyl-transfer reaction process by human DNA polymerase η using time-resolved protein crystallography. In sequence, two Mg(2+) ions bind to the active site, the nucleophile 3'-OH is deprotonated, the deoxyribose at the primer end converts from C2'-endo to C3'-endo, and the nucleophile and the α-phosphate of the substrate dATP approach each other to form the new bond. In this process, we observed transient elements, which are a water molecule to deprotonate the 3'-OH and an additional Mg(2+) ion to stabilize the intermediate state. Particularly, the third Mg(2+) ion observed in this study may be a general feature of the two-metalion mechanism.

18.
Nature ; 487(7406): 196-201, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22785315

RESUMEN

DNA synthesis has been extensively studied, but the chemical reaction itself has not been visualized. Here we follow the course of phosphodiester bond formation using time-resolved X-ray crystallography. Native human DNA polymerase η, DNA and dATP were co-crystallized at pH 6.0 without Mg(2+). The polymerization reaction was initiated by exposing crystals to 1 mM Mg(2+) at pH 7.0, and stopped by freezing at desired time points for structural analysis. The substrates and two Mg(2+) ions are aligned within 40 s, but the bond formation is not evident until 80 s. From 80 to 300 s structures show a mixture of decreasing substrate and increasing product of the nucleotidyl-transfer reaction. Transient electron densities indicate that deprotonation and an accompanying C2'-endo to C3'-endo conversion of the nucleophile 3'-OH are rate limiting. A third Mg(2+) ion, which arrives with the new bond and stabilizes the intermediate state, may be an unappreciated feature of the two-metal-ion mechanism.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Catálisis , ADN Polimerasa Dirigida por ADN/química , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Magnesio/química , Metales/química , Conformación de Ácido Nucleico , Agua/química
19.
J Biol Chem ; 287(25): 21541-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22556419

RESUMEN

Most of the proteins carrying the 23-residue MutT-related sequence are capable of hydrolyzing compounds with a general structure of nucleoside diphosphate linked to another moiety X and are called the Nudix hydrolases. Among the 22 human Nudix proteins (identified by the sequence signature), some remain uncharacterized as enzymes without a defined substrate. Here, we reveal that the NUDT18 protein, whose substrate was unknown, can degrade 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing nucleoside diphosphates to the monophosphates. Because this enzyme is closely related to MTH1 (NUDT1) and MTH2 (NUDT15), we propose that it should be named MTH3. Although these three human proteins resemble each other in their sequences, their substrate specificities differ considerably. MTH1 cleaves 8-oxo-dGTP but not 8-oxo-dGDP, whereas MTH2 can degrade both 8-oxo-dGTP and 8-oxo-dGDP, although the intrinsic enzyme activity of MTH2 is considerably lower than that of MTH1. On the other hand, MTH3 is specifically active against 8-oxo-dGDP and hardly cleaves 8-oxo-dGTP. Other types of oxidized nucleoside diphosphates, 2-hydroxy-dADP and 8-hydroxy-dADP, were also hydrolyzed by MTH3. Another notable feature of the MTH3 enzyme is its action toward the ribonucleotide counterpart. MTH3 can degrade 8-oxo-GDP as efficiently as 8-oxo-dGDP, which is in contrast to the finding that MTH1 and MTH2 show a limited activity against the ribonucleotide counterpart, 8-oxo-GTP. These three enzymes may function together to help maintain the high fidelity of DNA replication and transcription under oxidative stress.


Asunto(s)
Desoxiguanosina/química , Guanosina/química , Pirofosfatasas/química , Replicación del ADN/fisiología , Desoxiguanosina/genética , Desoxiguanosina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Células HeLa , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Especificidad por Sustrato , Transcripción Genética/fisiología , Hidrolasas Nudix
20.
Artículo en Inglés | MEDLINE | ID: mdl-22505413

RESUMEN

Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. IL-23 plays crucial roles in the activation, proliferation and survival of IL-17-producing helper T cells which induce various autoimmune diseases. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells, which produce high-mannose-type glycosylated proteins in order to diminish the heterogeneity of modified N-linked glycans. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction data were then collected to 2.6 Å resolution. The crystal belonged to space group P6(1) or P6(5), with unit-cell parameters a = b = 108.94, c = 83.79 Å, γ = 120°. Assuming that the crystal contains one molecule per asymmetric unit, the calculated Matthews coefficient was 2.69 Å(3) Da(-1), with a solvent content of 54.2%. The structure was determined by the molecular-replacement method, with an initial R factor of 52.6%. After subsequent rigid-body and positional refinement, the R(work) and R(free) values decreased to 31.4% and 38.7%, respectively.


Asunto(s)
Interleucina-23/química , Cristalización , Cristalografía por Rayos X , Glicosilación , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...