Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 884: 147695, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37549856

RESUMEN

The planktonic diatom Chaetoceros tenuissimus sometimes forms blooms in coastal surface waters where dissolved inorganic phosphorus (P) is typically deficient. To understand the molecular mechanisms for survival under P-deficient conditions, we compared whole transcripts and metabolites with P-sufficient conditions using stationary growth cells. Under P-deficient conditions, cell numbers and photosynthetic activities decreased as cells entered the stationary growth phase, with downregulation of transcripts related to the Calvin cycle and glycolysis/gluconeogenesis. Therefore, metabolites varied across nutritional conditions. Alkaline phosphatase, phosphodiesterase, phytase, phosphate transporter, and transcription factor genes were drastically upregulated under dissolved inorganic P deficiency. Genes related to phospholipid degradation and nonphospholipid synthesis were also upregulated. These results indicate that C. tenuissimus rearranges its membrane composition from phospholipids to nonphospholipids to conserve phosphate. To endure in P-deficient conditions, C. tenuissimus modifies its gene responses, suggesting a potential survival strategy in nature.


Asunto(s)
Diatomeas , Diatomeas/genética , Fotosíntesis , Plancton , Fosfatos/metabolismo , Fósforo/metabolismo
2.
FEMS Microbiol Lett ; 369(1)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35906193

RESUMEN

Phosphonic acid (phosphonate) that possesses a carbon-phosphours bond is a chemically stable form of organic phosphorus. Various phosphonic acids are widely distributed in oceanic waters; in particular, methylphosphonic acid (namely methylphosphonate) is believed to be responsible for global methane production. To discuss the microbial degradation of phosphonic acids, we investigated the utilization of phosphonic acid compounds by cultures of marine bacteria, Phaeobacter sp., Ruegeria sp. (Rhodobacterales), and Thalassospira sp. (Rhodospirillales). These bacterial cultures were able to grow on methylphosphonic acid as well as on the tested alkyl-, carboxy-, aminoalkyl-, and hydroxyalkyl-phosphonic acid compounds. Cell yields and growth rates of Ruegeria and Thalassospira cultures grown on methyl-, ethyl-, propyl-, and butyl-phosphonic acid compounds tended to decrease with increasing alkyl chain length. In contrast, Phaeobacter sp. grew well on such alkyl-phosphonic acids. Our results suggest that these marine bacteria, which exhibit varied utilization, are involved in microbial degradation of various phosphonic acid compounds.


Asunto(s)
Ácidos Fosforosos , Rhodobacteraceae , Océanos y Mares , Fósforo
3.
Harmful Algae ; 115: 102230, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35623687

RESUMEN

The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate that has been investigated worldwide as the causative agent of ciguatera poisoning (CP). In Japan, CP occurs mainly in the subtropical region and sporadically in the temperate region. To understand the mechanism of CP outbreaks in the coastal regions, identifying the species of Gambierdiscus occurring in the regions and determining their toxicity and growth characteristics, such as growth responses to temperature, salinity, and light intensity, are important. Recently, the occurrence of G. silvae in the Japanese temperate and subtropical regions has been revealed through metabarcoding. However, the toxicity and growth characteristics of G. silvae have not yet been investigated. In this study, three strains of Gambierdiscus were isolated from a depth of 30 m in subtropical waters in Japan and were identified as Gambierdiscus silvae based on morphological characteristics and phylogenetic positions. A dichloromethane soluble fraction (DSF) and aqueous methanol soluble fraction (MSF) of the three strains showed high mouse toxicity by intraperitoneal injection, but only the DSF of the three strains showed toxicity by gavage. All strains grew in the range of 17.5-30 °C and salinity range of 25-40, and grew well at 25 °C and salinity 30. The optimal light intensity for growth of the strains was 42.0-83.0 µmol photons/m2/s. These results suggest that G. silvae has the potential to be widely distributed from temperate to subtropical/ regions and in shallow to deep coastal waters of Japan. Understanding the growth characteristics of this species would be useful in predicting the occurrence of this species in Japanese coastal waters. Finally, the results obtained in this study suggest that G. silvae showing high toxicity is one of the causative agents of CP in Japan, and knowledge of this species would be useful in understanding the mechanism of CP outbreaks in Japan.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Animales , Dinoflagelados/fisiología , Japón , Ratones , Filogenia
4.
PLoS One ; 17(4): e0266268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442965

RESUMEN

The structure of food webs and carbon flow in aquatic ecosystems can be better understood by studying contributing factors such as the diets of herbivorous fish. Metabarcoding using a high-throughput sequencer has recently been used to clarify prey organisms of various fish except herbivorous fish. Since sequences of predator fish have dominated in sequences obtained by metabarcoding, we investigated a method for suppressing the amplification of fish DNA by using a blocking primer or peptide nucleic acid (PNA) clamp to determine the prey organisms of herbivorous fish. We designed three blocking primers and one PNA clamp that anneal to fish-specific sequences and examined how efficient they were in suppressing DNA amplification in various herbivorous fish. The results showed that the PNA clamp completely suppressed fish DNA amplification, and one of the blocking primers suppressed fish DNA amplification but less efficiently than the PNA clamp. Finally, we conducted metabarcoding using mock community samples as templates to determine whether the blocking primer or the PNA clamp was effective in suppressing fish DNA amplification. The results showed that the PNA clamp suppressed 99.3%-99.9% of fish DNA amplification, whereas the blocking primer suppressed 3.3%-32.9%. Therefore, we propose the application of the PNA clamp for clarifying the prey organisms and food preferences of various herbivorous fish.


Asunto(s)
Ácidos Nucleicos de Péptidos , Animales , ADN/genética , Cartilla de ADN/genética , Dieta , Ecosistema , Peces/genética , Ácidos Nucleicos de Péptidos/genética
5.
Harmful Algae ; 111: 102163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016767

RESUMEN

The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate considered the causative agent of ciguatera poisoning (CP). Clarifying the geographical distribution of this genus to understand the potential risk of CP is important. Many studies have focused only on the species/phylotype composition of Gambierdiscus in shallow waters, but no study has investigated the species/phylotype composition of the genus in deep waters. In the present study, the distributions of Gambierdiscus species/phylotypes at two depths (2-8 and 30 m) and two sampling sites (temperate and subtropical) in Japan was investigated using high throughput sequencing (HTS) with a newly developed primer set that preferentially amplifies the 18S rDNA V8-V9 region of Alveolata. A phylogenetic analysis using 89 samples collected over three years revealed of ten Gambierdiscus species/phylotypes including not only two species that have not been reported in Japan (G. caribaeus and G. silvae) but also four novel phylotypes (Gambierdiscus spp. Clade II_1, Clade II_2, Clade II_3, and Clade VI_1). Uncorrected genetic distances also supported that these new phylotypes clearly diverged from other Gambierdiscus species. All four new phylotypes, G. caribaeus, and G. silvae were distributed in the subtropical region. Among them, Clade II_2, Clade VI_1, and G. silvae were also distributed in the temperate region. Four species/phylotypes previously reported from Japan showed a similar distribution as reported previously. Among the ten species/phylotypes, Gambierdiscus sp. type 3 and Clade VI_1 were found only in deep waters, whereas five species/phylotypes were observed only in shallow waters. The other three species/phylotypes were found in both deep and shallow waters. The results of the horizontal and vertical distribution suggest that the growth characteristics of each species/phylotypes found in Japan might adapt to the ambient environmental conditions. This study revealed an inclusive assemblage of Gambierdiscus species/phylotypes in Japan through metabarcoding using the Alveolata primer set. In the future, the abundance and toxicities/toxin productions of the newly reported species/phylotypes need to be clarified to understand the mechanism of CP outbreaks in Japan.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , ADN Ribosómico/genética , Japón , Filogenia
6.
Harmful Algae ; 103: 102008, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980448

RESUMEN

Recent increase of Harmful Algal Blooms (HAB) causes world-wide ecological, economical, and health issues, and more attention is paid to frequent coastal monitoring for the early detection of HAB species to prevent or reduce such impacts. Use of molecular tools in addition to traditional microscopy-based observation has become one of the promising methodologies for coastal monitoring. However, as ribosomal RNA (rRNA) genes are commonly targeted in molecular studies, variability in the rRNA gene copy number within and between species must be considered to provide quantitative information in quantitative PCR (qPCR), digital PCR (dPCR), and metabarcoding analyses. Currently, this information is only available for a limited number of species. The present study utilized a dPCR technology to quantify copy numbers of rRNA genes per single cell in 16 phytoplankton species, the majority of which are toxin-producers, using a newly developed universal primer set accompanied by a labeled probe with a fluorophore and a double-quencher. In silico PCR using the newly developed primers allowed the detection of taxa from 8 supergroups, demonstrating universality and broad coverage of the primer set. Chelex buffer was found to be suitable for DNA extraction to obtain DNA fragments with suitable size to avoid underestimation of the copy numbers. The study successfully demonstrated the first comparison of absolute quantification of 18S rRNA copy numbers per cell from 16 phytoplankton species by the dPCR technology.


Asunto(s)
Variaciones en el Número de Copia de ADN , Floraciones de Algas Nocivas , Dosificación de Gen , Genes de ARNr , Fitoplancton/genética
7.
Harmful Algae ; 103: 102025, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980453

RESUMEN

Diarrhetic shellfish poisoning (DSP) is caused by the consumption of shellfish contaminated by diarrhetic shellfish toxins (DSTs) such as okadaic acid (OA) and dinophysistoxins (DTXs) produced by some species of dinoflagellates. To prevent the occurrence of human intoxication cases, inspection of DSTs (OA and DTXs) in shellfish is important. An instrumental method using liquid chromatography-tandem mass spectrometry (LC/MS/MS) has been recently employed in Japan for the monitoring of OA and DTXs in shellfish. For such analysis, reference materials (RMs) of OA and DTXs are essential. Demand for the reference materials, especially dinophysistoxin-1 (DTX1), is recently increasing in Japan. Production of the materials has been performed by mass cultivation of a dinoflagellate (Prorocentrum lima) strain that produces DTXs and OA, which indicates that the efficiency of production depends on the toxin production of the strain used. In this study, P. lima complex subclade 1e strain MIO12P was determined to be a high DTX1 producer among the three Japanese strains of the P. lima complex (subclades 1e, 1f, and 1i). It was clarified that the culture medium suitable for toxin production by strain MIO12P was metals mix SWII medium, and the optimal temperature and salinity for toxin production were 25 °C and salinity 30, respectively. The DTX1 yield (1265.3 ng ml-1) of strain MIO12P cultured under the conditions described above was the highest reported worldwide. Prorocentrum lima complex subclade 1e strain MIO12P is expected to be useful for the sustainable production of DTX1 as a source of RMs for chemical and biochemical methods in the future.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Japón , Mariscos , Espectrometría de Masas en Tándem
8.
Microbes Environ ; 36(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390375

RESUMEN

Viral infections are a major factor in diatom cell death. However, the effects of viruses on diatom dynamics remain unclear. Based on laboratory studies, it is hypothesized that virus-induced diatom mortality is dependent on the diatom growth rate. The present study aimed to elucidate the relationship between the diatom growth rate and virus-induced mortality using model systems of the marine planktonic diatom, Chaetoceros tenuissimus and its infectious viruses. We also examined the fate of diatom populations in a semi-continuous dilution culture system, in which host growth rates were controlled at 0.69, 2.08, and 3.47 day-1. Diatom populations gradually decreased following the viral inoculation of each culture system, and virus-induced mortality inversely correlated with the diatom growth rate. Furthermore, the viral burst size was slightly higher in lower growth rate cultures. These results suggested that the host physiological status related to the growth rate affected viral infection and proliferation. Diatom populations were not completely lysed or washed out in any of the dilution systems; they showed steady growth in the presence of infectious viruses. This may be partially explained by defective interference particles from viruses and cell debris. The present results indicate that diatoms in dilution environments maintain their populations, even under viral pressure. Moreover, diatom populations with a low growth rate may partially sustain higher growth populations through nutrient recycling following virus-induced cell death. The results of the present study provide insights into diatom dynamics in natural environments in the presence of infectious viruses.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Diatomeas/virología , Fenómenos Fisiológicos de los Virus , Técnicas de Cultivo de Célula , Muerte Celular , Diatomeas/química , Diatomeas/citología , Cinética , Virus/genética
9.
Mar Genomics ; 42: 41-48, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30509379

RESUMEN

The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.


Asunto(s)
Proteínas Algáceas/genética , Diatomeas/genética , Expresión Génica , Regiones Promotoras Genéticas , Transgenes , Proteínas Algáceas/metabolismo
10.
Fish Physiol Biochem ; 43(6): 1603-1612, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28695381

RESUMEN

The present study reports the development of a method to investigate ichthyotoxicity of harmful marine microalgae using cultured red sea bream (Pagrus major) gill cells. The cultured gill cells formed adherent 1-2 layers on the bottom of the culture plate and could tolerate seawater exposure for 4 h without significant alteration in cell survival. The microalgae Karenia mikimotoi, Karenia papilionacea, K. papilionacea phylotype-I, and Heterosigma akashiwo were cultured, then directly exposed to gill cells. After K. mikimotoi and K. papilionacea phylotype-I exposure, live cell coverage was significantly lower than in the cells exposed to a seawater-based medium (control cells; P < 0.05). Toxicity of K. mikimotoi cells was weakened when cells were ruptured, and was almost inexistent when the algal cells were removed from the culture by filtration. Significant cytotoxicity was detected in the concentrated ruptured cells, and in the concentrated of ruptured cells after freezing and thawing though cytotoxicity was weakened; whereas, cytotoxicity almost disappeared after heat treatment. In addition, examination of the distribution of toxic substances from the ruptured cells showed that cytotoxicity mainly occurred in the fraction with the resuspended pellet after centrifugation at 3000×g.


Asunto(s)
Branquias/citología , Microalgas , Perciformes , Animales , Células Cultivadas , Dinoflagelados , Toxinas Marinas
11.
Harmful Algae ; 52: 11-22, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-28073467

RESUMEN

In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R2=1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies of each species/phylotype in each sample by the number of rDNA copies per cell. The numbers of cells of each species/phylotype quantified by qPCR assay were similar to the number of cells of each species/phylotype that were spiked. Finally, the cell densities of the target species/phylotypes were quantified using the qPCR assay in 30 environmental samples collected from Japanese coastal areas. Total cell densities of the four Gambierdiscus species/phylotypes quantified by qPCR assay were similar to those of Gambierdiscus spp. quantified by direct counting under a light microscope. The qPCR assay developed in this study is expected to be a powerful new tool for determining detailed distribution patterns and for monitoring the cell abundance and dynamics of each Japanese Gambierdiscus species/phylotype in the coastal areas of Japan.


Asunto(s)
Dinoflagelados/genética , Monitoreo del Ambiente/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN Ribosómico/genética , Dinoflagelados/fisiología , Japón , Densidad de Población , Reproducibilidad de los Resultados
12.
Harmful Algae ; 60: 107-115, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28073553

RESUMEN

Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R>0.92 (p<0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (µmax) and ≥80% µmax values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208µmol photons m-2s-1 and 91-422µmol photons m-2s-1, respectively; (2) those of G. scabrosus were 252 and 120-421µmol photons m-2s-1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75-430µmol photons m-2s-1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73-427µmol photons m-2s-1, respectively. All four Gambierdiscus species/phylotypes required approximately 10µmol photons m-2s-1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer's Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058-0.119m-1. The values 1700µmol photons m-2s-1, 500µmol photons m-2s-1, and 200µmol photons m-2s-1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12-38m and 12-54m, 1-16m and 1-33m, and 0m and 0-16m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/efectos de la radiación , Luz Solar , Animales , Islas , Japón , Filogenia
13.
Harmful Algae ; 57(Pt A): 59-68, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30170722

RESUMEN

Several species of the genus Karenia (Dinophyceae) form blooms and often cause the mortality of cultured and wild fish. In Japan, blooms caused by two species - namely Karenia mikimotoi and Karenia brevis - have been reported so far. On the basis of morphological and molecular-phylogenic examinations, the present investigation found Karenia papilionacea and its novel sister phylotype for the first time in the coastal waters of the various regions of Japan. Of 34 strains isolated from the coastal waters, 27 strains displayed the typical morphological characteristics of K. papilionacea and further showed consensus DNA sequences corresponding to those of the originally described K. papilionacea. The other 7 strains displayed the same morphological characteristics of K. papilionacea, but showed divergent DNA sequences, at a genetic distance of over 0.04 (Internal Transcribed Spacer regions) from those of the original phylotype of K. papilionacea. These divergent strains were characterized as a novel sister phylotype (phylotype-I) of K. papilionacea. In the coastal waters of Japan, K. papilionacea-like (K. papilionacea and/or its phylotype-I) formed blooms at 20.3-30.4°C and salinity 30.1-33.9. No K. brevis was identified in Japanese coastal waters during this study. These findings demonstrated that K. papilionacea occurs along the coasts of western Japan and possibly shares several coastal regions with K. mikimotoi and K. papilionacea phylotype-I. In order to assess the risks of Karenia blooms to aquaculture, it is essential that the growth physiology and ichthyotoxicity of K. papilionacea and its novel phylotype should be characterized.

14.
Sci Rep ; 5: 18708, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26692124

RESUMEN

Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.


Asunto(s)
Diatomeas/virología , Regiones Promotoras Genéticas , Agua de Mar , Virus/genética , Simulación por Computador , ADN/aislamiento & purificación , Citometría de Flujo , Fluorescencia , Genes , Proteínas Fluorescentes Verdes/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transformación Genética
15.
PLoS One ; 10(11): e0142731, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26561394

RESUMEN

The dinoflagellate Karenia mikimotoi forms blooms in the coastal waters of temperate regions and occasionally causes massive fish and invertebrate mortality. This study aimed to elucidate the toxic effect of K. mikimotoi on marine organisms by using the genomics approach; RNA-sequence libraries were constructed, and data were analyzed to identify toxin-related genes. Next-generation sequencing produced 153,406 transcript contigs from the axenic culture of K. mikimotoi. BLASTX analysis against all assembled contigs revealed that 208 contigs were polyketide synthase (PKS) sequences. Thus, K. mikimotoi was thought to have several genes encoding PKS metabolites and to likely produce toxin-like polyketide molecules. Of all the sequences, approximately 30 encoded eight PKS genes, which were remarkably similar to those of Karenia brevis. Our phylogenetic analyses showed that these genes belonged to a new group of PKS type-I genes. Phylogenetic and active domain analyses showed that the amino acid sequence of four among eight Karenia PKS genes was not similar to any of the reported PKS genes. These PKS genes might possibly be associated with the synthesis of polyketide toxins produced by Karenia species. Further, a homology search revealed 10 contigs that were similar to a toxin gene responsible for the synthesis of saxitoxin (sxtA) in the toxic dinoflagellate Alexandrium fundyense. These contigs encoded A1-A3 domains of sxtA genes. Thus, this study identified some transcripts in K. mikimotoi that might be associated with several putative toxin-related genes. The findings of this study might help understand the mechanism of toxicity of K. mikimotoi and other dinoflagellates.


Asunto(s)
Dinoflagelados/genética , Sintasas Poliquetidas/genética , Proteínas Protozoarias/genética , Análisis de Secuencia de ARN/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Mapeo Contig , Bases de Datos Genéticas , Dinoflagelados/enzimología , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Sintasas Poliquetidas/química , Proteínas Protozoarias/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saxitoxina/química , Homología de Secuencia de Aminoácido
16.
J Phycol ; 50(3): 506-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26988323

RESUMEN

A new epiphytic dinoflagellate is described, G ambierdiscus scabrosus sp. nov., from tidal pools and rocky shores along the coastal areas of Japan. Cells are 63.2 ± 5.7 µm in depth, 58.2 ± 5.7 µm in width, and 37.3 ± 3.5 µm in length. The plate formula of G . scabrosus is Po, 4', 0a, 6'', 6c, ?s, 5''', 0p, and 2''''. Morphologically, G . scabrosus resembles G . belizeanus as follows: anterioposteriorly compressed cell shape, narrow 2'''' plate, and areolated surface. Despite this similarity, the cells of G . scabrosus can be distinguishable by the presence of the asymmetric shaped 3'' plate and the rectangular shaped 2' plate.

17.
PLoS One ; 8(3): e57627, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593102

RESUMEN

Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters.


Asunto(s)
Dinoflagelados/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Cartilla de ADN/genética , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Dinoflagelados/citología , Genes Protozoarios , Floraciones de Algas Nocivas , Japón , Océanos y Mares , Plásmidos/genética , ARN Ribosómico 28S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Sensibilidad y Especificidad , Reparación del Gen Blanco
18.
PLoS One ; 8(4): e60882, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593339

RESUMEN

BACKGROUND: The marine epiphytic dinoflagellate genus Gambierdiscus produce toxins that cause ciguatera fish poisoning (CFP): one of the most significant seafood-borne illnesses associated with fish consumption worldwide. So far, occurrences of CFP incidents in Japan have been mainly reported in subtropical areas. A previous phylogeographic study of Japanese Gambierdiscus revealed the existence of two distinct phylotypes: Gambierdiscus sp. type 1 from subtropical and Gambierdiscus sp. type 2 from temperate areas. However, details of the genetic diversity and distribution for Japanese Gambierdiscus are still unclear, because a comprehensive investigation has not been conducted yet. METHODS/PRINCIPAL FINDING: A total of 248 strains were examined from samples mainly collected from western and southern coastal areas of Japan during 2006-2011. The SSU rDNA, the LSU rDNA D8-D10 and the ITS region were selected as genetic markers and phylogenetic analyses were conducted. The genetic diversity of Japanese Gambierdiscus was high since five species/phylotypes were detected: including two reported phylotypes (Gambierdiscus sp. type 1 and Gambierdiscus sp. type 2), two species of Gambierdiscus (G. australes and G. cf. yasumotoi) and a hitherto unreported phylotype Gambierdiscus sp. type 3. The distributions of type 3 and G. cf. yasumotoi were restricted to the temperate and the subtropical area, respectively. On the other hand, type 1, type 2 and G. australes occurred from the subtropical to the temperate area, with a tendency that type 1 and G. australes were dominant in the subtropical area, whereas type 2 was dominant in the temperate area. By using mouse bioassay, type 1, type 3 and G. australes exhibited mouse toxicities. CONCLUSIONS/SIGNIFICANCE: This study revealed a surprising diversity of Japanese Gambierdiscus and the distribution of five species/phylotypes displayed clear geographical patterns in Japanese coastal areas. The SSU rDNA and the LSU rDNA D8-D10 as genetic markers are recommended for further use.


Asunto(s)
Ciguatoxinas/metabolismo , Demografía , Dinoflagelados/genética , Variación Genética , Filogenia , Animales , Teorema de Bayes , Bioensayo , Ciguatoxinas/toxicidad , ADN Ribosómico/genética , Dinoflagelados/metabolismo , Evolución Molecular , Marcadores Genéticos , Japón , Ratones , Modelos Genéticos , Filogeografía
19.
PLoS One ; 6(12): e27983, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164222

RESUMEN

BACKGROUND: A dinoflagellate genus Ostreopsis is known as a potential producer of Palytoxin derivatives. Palytoxin is the most potent non-proteinaceous compound reported so far. There has been a growing number of reports on palytoxin-like poisonings in southern areas of Japan; however, the distribution of Ostreopsis has not been investigated so far. Morphological plasticity of Ostreopsis makes reliable microscopic identification difficult so the employment of molecular tools was desirable. METHODS/PRINCIPAL FINDING: In total 223 clones were examined from samples mainly collected from southern areas of Japan. The D8-D10 region of the nuclear large subunit rDNA (D8-D10) was selected as a genetic marker and phylogenetic analyses were conducted. Although most of the clones were unable to be identified, there potentially 8 putative species established during this study. Among them, Ostreopsis sp. 1-5 did not belong to any known clade, and each of them formed its own clade. The dominant species was Ostreopsis sp. 1, which accounted for more than half of the clones and which was highly toxic and only distributed along the Japanese coast. Comparisons between the D8-D10 and the Internal Transcribed Spacer (ITS) region of the nuclear rDNA, which has widely been used for phylogenetic/phylogeographic studies in Ostreopsis, revealed that the D8-D10 was less variable than the ITS, making consistent and reliable phylogenetic reconstruction possible. CONCLUSIONS/SIGNIFICANCE: This study unveiled a surprisingly diverse and widespread distribution of Japanese Ostreopsis. Further study will be required to better understand the phylogeography of the genus. Our results posed the urgent need for the development of the early detection/warning systems for Ostreopsis, particularly for the widely distributed and strongly toxic Ostreopsis sp. 1. The D8-D10 marker will be suitable for these purposes.


Asunto(s)
Dinoflagelados/fisiología , Filogeografía/métodos , Biodiversidad , Análisis por Conglomerados , ADN Intergénico/genética , ADN Ribosómico/genética , Dinoflagelados/genética , Marcadores Genéticos/genética , Variación Genética , Japón , Funciones de Verosimilitud , Familia de Multigenes , Océano Pacífico , Filogenia , Fitoplancton/metabolismo , Programas Informáticos , Temperatura , Agua/química
20.
Nihon Shokakibyo Gakkai Zasshi ; 104(5): 684-9, 2007 May.
Artículo en Japonés | MEDLINE | ID: mdl-17485949

RESUMEN

A 28-year-old woman with ascites was admitted to our hospital. We diagnosed peritonitis carcinomatosa caused by colon cancer complicated by ulcerative colitis. We performed peritoneal tap and infusion of mitomycin C, and administered 5-fluorouracil. Her clinical status gradually worsened, and she died 5 months later. At autopsy, the histological examination showed many mucinous adenocarcinoma and signet ring cell carcinoma with dysplasia. There were also some areas of squamous cell carcinoma with squamous metaplasia and dysplasia far from rectum. Squamous cell carcinoma and adenosquamous cell carcinoma of the colon are rare complications of ulcerative colitis. We reported this case as an addition to the literature on the subject.


Asunto(s)
Carcinoma de Células Escamosas/patología , Colitis Ulcerosa/complicaciones , Neoplasias del Colon/patología , Adulto , Carcinoma Adenoescamoso/patología , Carcinoma de Células en Anillo de Sello/patología , Carcinoma de Células Escamosas/complicaciones , Neoplasias del Colon/complicaciones , Femenino , Humanos , Neoplasias Primarias Múltiples/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...