Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965933

RESUMEN

The bromodomain is a conserved protein-protein interaction module that functions exclusively to recognize acetylated lysine residues on histones and other proteins. It is noteworthy that bromodomain-containing proteins are involved in transcriptional modulation by recruiting various transcription factors and/or protein complexes such as ATP-dependent chromatin remodelers and acetyltransferases. Bromodomain-containing protein 8 (BRD8), a molecule initially recognized as skeletal muscle abundant protein and thyroid hormone receptor coactivating protein of 120 kDa (TrCP120), was shown to be a subunit of the NuA4/TIP60-histone acetyltransferase complex. BRD8 has been reported to be upregulated in a subset of cancers and implicated in the regulation of cell proliferation as well as in the response to cytotoxic agents. However, little is still known about the underlying molecular mechanisms. In recent years, it has become increasingly clear that the bromodomain of BRD8 recognizes acetylated and/or nonacetylated histones H4 and H2AZ, and that BRD8 is associated with cancer development in both a NuA4/TIP60 complex-dependent and -independent manner. In this review, we will provide an overview of the current knowledge on the molecular function of BRD8, focusing on the biological role of the bromodomain of BRD8 in cancer cells.

2.
Nature ; 632(8023): 174-181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987594

RESUMEN

Changes in the gut microbiome have pivotal roles in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogenic haematopoietic cell transplantation (allo-HCT)1-6. However, effective methods for safely resolving gut dysbiosis have not yet been established. An expansion of the pathogen Enterococcus faecalis in the intestine, associated with dysbiosis, has been shown to be a risk factor for aGVHD7-10. Here we analyse the intestinal microbiome of patients with allo-HCT, and find that E. faecalis escapes elimination and proliferates in the intestine by forming biofilms, rather than by acquiring drug-resistance genes. We isolated cytolysin-positive highly pathogenic E. faecalis from faecal samples and identified an anti-E. faecalis enzyme derived from E. faecalis-specific bacteriophages by analysing bacterial whole-genome sequencing data. The antibacterial enzyme had lytic activity against the biofilm of E. faecalis in vitro and in vivo. Furthermore, in aGVHD-induced gnotobiotic mice that were colonized with E. faecalis or with patient faecal samples characterized by the domination of Enterococcus, levels of intestinal cytolysin-positive E. faecalis were decreased and survival was significantly increased in the group that was treated with the E. faecalis-specific enzyme, compared with controls. Thus, administration of a phage-derived antibacterial enzyme that is specific to biofilm-forming pathogenic E. faecalis-which is difficult to eliminate with existing antibiotics-might provide an approach to protect against aGVHD.


Asunto(s)
Bacteriófagos , Enterococcus faecalis , Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Bacteriófagos/enzimología , Bacteriófagos/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Disbiosis/complicaciones , Disbiosis/microbiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/metabolismo , Enterococcus faecalis/virología , Heces/microbiología , Vida Libre de Gérmenes , Enfermedad Injerto contra Huésped/complicaciones , Enfermedad Injerto contra Huésped/microbiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Técnicas In Vitro , Intestinos/efectos de los fármacos , Intestinos/microbiología , Perforina/metabolismo , Factores de Riesgo , Trasplante Homólogo/efectos adversos , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana/efectos de los fármacos , Antibacterianos/farmacología
3.
Commun Biol ; 7(1): 510, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684876

RESUMEN

Deregulation of the Wnt/ß-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the ß-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of ß-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/ß-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito , Neoplasias Hepáticas , Vía de Señalización Wnt , beta Catenina , Humanos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , beta Catenina/metabolismo , beta Catenina/genética , Aminoácidos/metabolismo , Línea Celular Tumoral , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética
5.
Mol Metab ; 84: 101943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657734

RESUMEN

OBJECTIVES: Adipose tissue is an endocrine and energy storage organ composed of several different cell types, including mature adipocytes, stromal cells, endothelial cells, and a variety of immune cells. Adipose tissue aging contributes to the pathogenesis of metabolic dysfunction and is likely induced by crosstalk between adipose progenitor cells (APCs) and immune cells, but the underlying molecular mechanisms remain largely unknown. In this study, we revealed the biological role of p16high senescent APCs, and investigated the crosstalk between each cell type in the aged white adipose tissue. METHODS: We performed the single-cell RNA sequencing (scRNA-seq) analysis on the p16high adipose cells sorted from aged p16-CreERT2/Rosa26-LSL-tdTomato mice. We also performed the time serial analysis on the age-dependent bulk RNA-seq datasets of human and mouse white adipose tissues to infer the transcriptome alteration of adipogenic potential within aging. RESULTS: We show that M2 macrophage-derived TGF-ß induces APCs senescence which impairs adipogenesis in vivo. p16high senescent APCs increase with age and show loss of adipogenic potential. The ligand-receptor interaction analysis reveals that M2 macrophages are the donors for TGF-ß and the senescent APCs are the recipients. Indeed, treatment of APCs with TGF-ß1 induces senescent phenotypes through mitochondrial ROS-mediated DNA damage in vitro. TGF-ß1 injection into gonadal white adipose tissue (gWAT) suppresses adipogenic potential and induces fibrotic genes as well as p16 in APCs. A gWAT atrophy is observed in cancer cachexia by APCs senescence, whose induction appeared to be independent of TGF-ß induction. CONCLUSIONS: Our results suggest that M2 macrophage-derived TGF-ß induces age-related lipodystrophy by APCs senescence. The TGF-ß treatment induced DNA damage, mitochondrial ROS, and finally cellular senescence in APCs.


Asunto(s)
Adipogénesis , Senescencia Celular , Macrófagos , Células Madre , Factor de Crecimiento Transformador beta , Animales , Ratones , Macrófagos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Madre/metabolismo , Humanos , Ratones Endogámicos C57BL , Envejecimiento/metabolismo , Masculino , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo
6.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451817

RESUMEN

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Sepsis , Humanos , Macrófagos del Hígado , Hígado/patología , Hepatopatías/patología , Organoides , Sepsis/patología , Endotoxinas , Diferenciación Celular
7.
Oncology ; 102(8): 720-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262376

RESUMEN

INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remains unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight noncancerous colonic epithelial tissues using MethylationEPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.


Asunto(s)
Neoplasias del Apéndice , Metilación de ADN , Seudomixoma Peritoneal , Humanos , Seudomixoma Peritoneal/genética , Seudomixoma Peritoneal/patología , Neoplasias del Apéndice/genética , Neoplasias del Apéndice/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias Peritoneales/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Adulto
8.
Int Immunol ; 36(4): 183-196, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147536

RESUMEN

In sarcoidosis, granulomas develop in multiple organs including the liver and lungs. Although mechanistic target of rapamycin complex 1 (mTORC1) activation in macrophages drives granuloma development in sarcoidosis by enhancing macrophage proliferation, little is known about the macrophage subsets that proliferate and mature into granuloma macrophages. Here, we show that aberrantly increased monocytopoiesis gives rise to granulomas in a sarcoidosis model, in which Tsc2, a negative regulator of mTORC1, is conditionally deleted in CSF1R-expressing macrophages (Tsc2csf1rΔ mice). In Tsc2csf1rΔ mice, common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), common monocyte progenitors / monocyte progenitors (cMoPs / MPs), inducible monocyte progenitors (iMoPs), and Ly6Cint CX3CR1low CD14- immature monocytes (iMOs), but not monocyte-dendritic cell progenitors (MDPs) and common dendritic cell progenitors (CDPs), accumulated and proliferated in the spleen. Consistent with this, monocytes, neutrophils, and neutrophil-like monocytes increased in the spleens of Tsc2csf1rΔ mice, whereas dendritic cells did not. The adoptive transfer of splenic iMOs into wild-type mice gave rise to granulomas in the liver and lungs. In these target organs, iMOs matured into Ly6Chi classical monocytes/macrophages (cMOs). Giant macrophages (gMAs) also accumulated in the liver and lungs, which were similar to granuloma macrophages in expression of cell surface markers such as MerTK and SLAMF7. Furthermore, the gMA-specific genes were expressed in human macrophages from sarcoidosis skin lesions. These results suggest that mTORC1 drives granuloma development by promoting the proliferation of monocyte/neutrophil progenitors and iMOs predominantly in the spleen, and that proliferating iMOs mature into cMOs and then gMAs to give rise to granuloma after migration into the liver and lungs in sarcoidosis.


Asunto(s)
Macrófagos , Sarcoidosis , Ratones , Humanos , Animales , Diferenciación Celular , Macrófagos/metabolismo , Monocitos/metabolismo , Granuloma/metabolismo , Granuloma/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
9.
Oncol Rep ; 51(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063270

RESUMEN

PVRL4 (or nectin­4) is a promising therapeutic target since its upregulated expression is found in a wide range of human cancer types. Enfortumab vedotin, an antibody­drug conjugate targeting PVRL4, is clinically used for the treatment of urothelial bladder cancer. In addition, rMV­SLAMblind, a genetically engineered oncolytic measles virus, can infect cancer cells and induce apoptosis through interaction with PVRL4. Although PVRL4 transcript levels are elevated in breast, lung and ovarian cancer, the mechanisms of its upregulation have not yet been uncovered. To clarify the regulatory mechanisms of elevated PVRL4 expression in breast cancer cells, Assay for Transposase­Accessible Chromatin­sequencing and chromatin immunoprecipitation­sequencing (ChIP­seq) data were used to search for its regulatory regions. Using breast cancer cells, an enhancer region was ultimately identified. Additional analyses, including ChIP and reporter assays, demonstrated that FOS interacted with the PVRL4 enhancer region, and that alterations of the FOS­binding motifs in the enhancer region decreased reporter activity. Consistent with these data, exogenous expression of FOS enhanced the reporter activity and PVRL4 expression in breast cancer cells. Furthermore, RNA­seq analysis using breast cancer cells treated with PVRL4 small interfering RNA revealed its possible involvement in the cytokine response and immune system. These data suggested that FOS was involved, at least partly, in the regulation of PVRL4 expression in breast cancer cells, and that elevated PVRL4 expression may regulate the response of cancer cells to cytokines and the immune system.


Asunto(s)
Neoplasias de la Mama , Nectinas , Virus Oncolíticos , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Virus Oncolíticos/genética , ARN Interferente Pequeño , Nectinas/genética , Nectinas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA