Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592643

RESUMEN

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

2.
Plant Physiol ; 195(1): 170-189, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38514098

RESUMEN

Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estrés Fisiológico , Frío , Transducción de Señal , Plantas/genética , Respuesta al Choque por Frío/fisiología , Fenómenos Fisiológicos de las Plantas
3.
Plant J ; 117(6): 1873-1892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168757

RESUMEN

Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.


Asunto(s)
Cambio Climático , Sequías , Respuesta al Choque Térmico , Productos Agrícolas/genética , Desarrollo de la Planta , Estrés Fisiológico/genética
4.
Front Plant Sci ; 14: 1269964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868310

RESUMEN

Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars.

5.
Proc Natl Acad Sci U S A ; 120(24): e2221863120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276398

RESUMEN

Osmotic stresses, such as drought and high salinity, adversely affect plant growth and productivity. The phytohormone abscisic acid (ABA) accumulates in response to osmotic stress and enhances stress tolerance in plants by triggering multiple physiological responses through ABA signaling. Subclass III SNF1-related protein kinases 2 (SnRK2s) are key regulators of ABA signaling. Although SnRK2s have long been considered to be self-activated by autophosphorylation after release from PP2C-mediated inhibition, they were recently revealed to be activated by two independent subfamilies of group B Raf-like kinases, B2-RAFs and B3-RAFs, under osmotic stress conditions. However, the relationship between SnRK2 phosphorylation by these RAFs and SnRK2 autophosphorylation and the individual physiological roles of each RAF subfamily remain unknown. In this study, we indicated that B2-RAFs are constantly active and activate SnRK2s when released from PP2C-mediated inhibition by ABA-binding ABA receptors, whereas B3-RAFs are activated only under stress conditions in an ABA-independent manner and enhance SnRK2 activity. Autophosphorylation of subclass III SnRK2s is not sufficient for ABA responses, and B2-RAFs are needed to activate SnRK2s in an ABA-dependent manner. Using plants grown in soil, we found that B2-RAFs regulate subclass III SnRK2s at the early stage of drought stress, whereas B3-RAFs regulate SnRK2s at the later stage. Thus, B2-RAFs are essential kinases for the activation of subclass III SnRK2s in response to ABA under mild osmotic stress conditions, and B3-RAFs function as enhancers of SnRK2 activity under severe stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Fosforilación , Plantas/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(16): e2216183120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036986

RESUMEN

Plants respond to severe temperature changes by inducing the expression of numerous genes whose products enhance stress tolerance and responses. Dehydration-responsive element (DRE)-binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors act as master switches in cold-inducible gene expression. Since DREB1 genes are rapidly and strongly induced by cold stress, the elucidation of the molecular mechanisms of DREB1 expression is vital for the recognition of the initial responses to cold stress in plants. A previous study indicated that the circadian clock-related MYB-like transcription factors REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 directly activate DREB1 expression under cold stress conditions. These RVEs function in the regulation of circadian clock-related gene expression under normal temperature conditions. They also activate the expression of HSF-independent heat-inducible genes under high-temperature conditions. Thus, there are thought to be specific regulatory mechanisms whereby the target genes of these transcription factors are switched when temperature changes are sensed. We revealed that NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) proteins act as coactivators of RVEs in cold and heat stress responses in addition to regulating circadian-regulated genes at normal temperatures. We found that among the four Arabidopsis LNKs, LNK1 and LNK2 function under normal and high-temperature conditions, and LNK3 and LNK4 function under cold conditions. Thus, these LNK proteins play important roles in inducing specific genes under different temperature conditions. Furthermore, LNK3 and LNK4 are specifically phosphorylated under cold conditions, suggesting that phosphorylation is involved in their activation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Arabidopsis/fisiología , Temperatura , Respuesta al Choque Térmico , Respuesta al Choque por Frío , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Transactivadores/metabolismo , Relojes Circadianos
7.
Plant Signal Behav ; 17(1): 2142725, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36398733

RESUMEN

Different abiotic stresses induce OsTZF1, a tandem CCCH-type zinc finger domain gene, in rice. Here, we report that transgenic rice plants overexpressing OsTZF1 under own promoter (POsTZF1:OsTZF1-OX [for overexpression]) transferred to soil showed normal growth similar to vector control plants. The POsTZF1:OsTZF1-OX produced normal leaves without any lesion mimic phenotype and exhibited normal seed setting. The POsTZF1:OsTZF1-OX plants showed significantly increased tolerance to salt and drought stresses and enhanced post stress recovery. Microarray analysis revealed a total of 846 genes up-regulated and 360 genes down-regulated in POsTZF1:OsTZF1-OX salt-treated plants. Microarray analysis of POsTZF1:OsTZF1-OX plants showed the regulation of many abiotic stress tolerance genes. These results suggest that OsTZF1-OX under own promoter show abiotic stress tolerance and produces no pleiotropic effect on phenotype of transgenic rice plant.


Asunto(s)
Oryza , Oryza/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Cloruro de Sodio/farmacología , Dedos de Zinc/genética , Plantas Modificadas Genéticamente/metabolismo
8.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(8): 470-492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36216536

RESUMEN

Land plants have developed sophisticated systems to cope with severe stressful environmental conditions during evolution. Plants have complex molecular systems to respond and adapt to abiotic stress, including drought, cold, and heat stress. Since 1989, we have been working to understand the complex molecular mechanisms of plant responses to severe environmental stress conditions based on functional genomics approaches with Arabidopsis thaliana as a model plant. We focused on the function of drought-inducible genes and the regulation of their stress-inducible transcription, perception and cellular signal transduction of stress signals to describe plant stress responses and adaptation at the molecular and cellular levels. We have identified key genes and factors in the regulation of complex responses and tolerance of plants in response to dehydration and temperature stresses. In this review article, we describe our 30-year experience in research and development based on functional genomics to understand sophisticated systems in plant response and adaptation to environmental stress conditions.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Estudios de Asociación Genética , Genómica , Fitomejoramiento , Plantas/genética , Estrés Fisiológico/genética
9.
Trends Plant Sci ; 27(9): 922-935, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35210165

RESUMEN

Recent studies have revealed the complex and flexible transcriptional regulatory network involved in cold-stress responses. Focusing on two major signaling pathways that respond to cold stress, we outline current knowledge of the transcriptional regulatory network and the post-translational regulation of transcription factors in the network. Cold-stress signaling pathways are closely associated with other signaling pathways such as those related to the circadian clock, and large amounts of data on their crosstalk and tradeoffs are available. However, it remains unknown how plants sense and transmit cold-stress signals to regulate gene expression. We discuss recent reports on cold-stress sensing and associated signaling pathways that regulate the network. We also emphasize future directions for developing abiotic stress-tolerant crop plants.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Frío , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115407

RESUMEN

Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factor XII/metabolismo , Raíces de Plantas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Respuesta de Proteína Desplegada/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Plantones/metabolismo , Transducción de Señal/fisiología
12.
Methods Mol Biol ; 2462: 181-189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152389

RESUMEN

Abscisic acid (ABA) is a key phytohormone involved in plant development, seed germination and responses to osmotic stresses, such as drought and high salinity. SNF1-related protein kinases (SnRK2s) play important roles in ABA-dependent and ABA-independent osmotic stress signaling. SnRK2s phosphorylate transcription factors and ion channels in response to ABA or osmotic stress to induce the expression of stress-responsive genes and stomatal closure, respectively, to confer osmotic stress tolerance. The activity of SnRK2s is directly or indirectly regulated by several protein factors. Identification of downstream substrates or upstream regulators of SnRK2s is very useful for elucidating protein components that regulate ABA and osmotic stress signaling. Here, we describe the use of affinity purification by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry to identify protein complexes involved in ABA and osmotic stress signaling in plants. We previously identified several protein factors that regulate ABA and osmotic stress signaling by using this method.


Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Sequías , Presión Osmótica/fisiología , Espectrometría de Masas en Tándem
13.
Plant Mol Biol ; 108(3): 257-275, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35050466

RESUMEN

KEY MESSAGE: A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/metabolismo , Agua/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Plantas Modificadas Genéticamente , Plásmidos , Estrés Fisiológico , Factores de Transcripción/genética
14.
Plant J ; 109(2): 342-358, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863007

RESUMEN

Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Plantas , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Sequías , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología
17.
Plants (Basel) ; 10(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924307

RESUMEN

Drought is a severe and complex abiotic stress that negatively affects plant growth and crop yields. Numerous genes with various functions are induced in response to drought stress to acquire drought stress tolerance. The phytohormone abscisic acid (ABA) accumulates mainly in the leaves in response to drought stress and then activates subclass III SNF1-related protein kinases 2 (SnRK2s), which are key phosphoregulators of ABA signaling. ABA mediates a wide variety of gene expression processes through stress-responsive transcription factors, including ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs) and several other transcription factors. Seed plants have another type of SnRK2s, ABA-unresponsive subclass I SnRK2s, that mediates the stability of gene expression through the mRNA decay pathway and plant growth under drought stress in an ABA-independent manner. Recent research has elucidated the upstream regulators of SnRK2s, RAF-like protein kinases, involved in early responses to drought stress. ABA-independent transcriptional regulatory systems and ABA-responsive regulation function in drought-responsive gene expression. DEHYDRATION RESPONSIVE ELEMENT (DRE) is an important cis-acting element in ABA-independent transcription, whereas ABA-RESPONSIVE ELEMENT (ABRE) cis-acting element functions in ABA-responsive transcription. In this review article, we summarize recent advances in research on cellular and molecular drought stress responses and focus on phosphorylation signaling and transcription networks in Arabidopsis and crops. We also highlight gene networks of transcriptional regulation through two major regulatory pathways, ABA-dependent and ABA-independent pathways, that ABA-responsive subclass III SnRK2s and ABA-unresponsive subclass I SnRK2s mediate, respectively. We also discuss crosstalk in these regulatory systems under drought stress.

18.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649234

RESUMEN

Cold stress is an adverse environmental condition that affects plant growth, development, and crop productivity. Under cold stress conditions, the expression of numerous genes that function in the stress response and tolerance is induced in various plant species, and the dehydration-responsive element (DRE) binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors function as master switches for cold-inducible gene expression. Cold stress strongly induces these DREB1 genes. Therefore, it is important to elucidate the mechanisms of DREB1 expression in response to cold stress to clarify the perception and response of cold stress in plants. Previous studies indicated that the central oscillator components of the circadian clock, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), are involved in cold-inducible DREB1 expression, but the underlying mechanisms are not clear. We revealed that the clock-related MYB proteins REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 are quickly and reversibly transferred from the cytoplasm to the nucleus under cold stress conditions and function as direct transcriptional activators of DREB1 expression. We found that CCA1 and LHY suppressed the expression of DREB1s under unstressed conditions and were rapidly degraded specifically in response to cold stress, which suggests that they act as transcriptional repressors and indirectly regulate the cold-inducible expression of DREB1s We concluded that posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression. Our findings clarify the complex relationship between the plant circadian clock and the regulatory mechanisms of cold-inducible gene expression.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción/genética
19.
J Plant Physiol ; 258-259: 153375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33609854

RESUMEN

Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.


Asunto(s)
Productos Agrícolas/fisiología , Sequías , Ingeniería Metabólica , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Agua/metabolismo , Adaptación Fisiológica , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico
20.
Plant Cell Environ ; 44(6): 1788-1801, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33506954

RESUMEN

Heat shock factor A1 (HsfA1) family proteins are the master regulators of the heat stress-responsive transcriptional cascade in Arabidopsis. Although 70 kDa heat shock proteins (HSP70s) are known to participate in repressing HsfA1 activity, the mechanisms by which they regulate HsfA1 activity have not been clarified. Here, we report the physiological functions of three cytosolic HSP70s, HSC70-1, HSC70-2 and HSC70-3, under normal and stress conditions. Expression of the HSC70 genes was observed in whole seedlings, and the HSC70 proteins were observed in the cytoplasm and nucleus under normal and stress conditions, as were the HsfA1s. hsc70-1/2 double and hsc70-1/2/3 triple mutants showed higher thermotolerance than the wild-type (WT) plants. Transcriptomic analysis revealed the upregulation of heat stress-responsive HsfA1-downstream genes in hsc70-1/2/3 mutants under normal growth conditions, demonstrating that these HSC70s redundantly function as repressors of HsfA1 activity. Furthermore, hsc70-1/2/3 plants showed a more severe growth delay during the germination stage than the WT plants under high-salt stress conditions, and many seed-specific cluster 2 genes that exhibited suppressed expression during germination were expressed in hsc70-1/2/3 plants, suggesting that these HSC70s also function in the developmental transition from seed to seedling under high-salt conditions by suppressing the expression of cluster 2 genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Germinación/fisiología , Proteínas del Choque Térmico HSC70/metabolismo , Estrés Salino/fisiología , Semillas/fisiología , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSC70/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Mutación , Células Vegetales/metabolismo , Termotolerancia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...