Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 355: 141837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554863

RESUMEN

Radioactivity of Ra isotopes in natural waters is of serious concern. Control of 226Ra concentrations in tailings ponds, which store waste from U ore extraction processes, is an important issue in mill tailings management. In this study, we tested microbially formed Mn(IV) oxide as an adsorbent for removal of Ra in water treatment. Biogenic Mn(IV) oxide (BMO) was prepared using a Mn(II)-oxidizing fungus, Coprinopsis urticicola strain Mn-2. First, adsorption experiments of Sr and Ba, as surrogates for Ra, onto BMO were conducted in aqueous NaCl solution at pH 7. Distribution coefficients for Ba and Sr were estimated to be ∼106.5 and ∼104.3 mL/g, respectively. EXAFS analysis indicated that both Sr and Ba adsorbed in inner-sphere complexes on BMO, suggesting that Ra would adsorb in a similar way. From these findings, we expected that BMO would work effectively in removal of Ra from water. Then, BMO was applied to remove Ra from mine water collected from a U mill tailings pond. Just 7.6 mg of BMO removed >98% of the 226Ra from 3 L of mine water, corresponding to a distribution coefficient of 107.4 mL/g for Ra at pH ∼7. The obtained value was convincingly high for practical application of BMO in water treatment. At the same time, the high distribution coefficient indicates that Mn(IV) oxide can be an important carrier and host phase of Ra in the environment.


Asunto(s)
Óxidos , Radio (Elemento) , Radio (Elemento)/análisis , Adsorción
2.
Sci Data ; 10(1): 601, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684226

RESUMEN

The typical seasonally dry forests in Southeast Asia are the mixed deciduous forest (MDF), dry dipterocarp (deciduous) forest (DDF), and dry evergreen forest (DEF). We obtained 21 physiological traits in the top/sunlit leaves of 107, 65 and 51 tree species in MDF, DEF and DDF, respectively. Approximately 70%, 95% and 95% of canopy tree species which consist of MDF, DEF and DDF are sampled, respectively. Light-saturated photosynthetic rates (Asat) exhibit a positive correlation with foliar nitrogen (N) and phosphorus (P) on leaf mass and area bases across tree species. Decreased leaf mass-based P reduces the positive slope of the mass-based N and Asat relationship across species and habitats. The differences in nutrient and water use and leaf habits are well matched to the variation in soil properties among the forest types, highlighting the reliability of this comprehensive database for revealing the mechanism of niche segregation based on edaphic factors.


Asunto(s)
Hojas de la Planta , Árboles , Bosques , Reproducibilidad de los Resultados , Tailandia
3.
PLoS One ; 18(5): e0286203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220165

RESUMEN

At a sedimentary site in an old mine site, Miscanthus sinensis formed patches, where Pinus densiflora seedlings could grow better compared with those outside the patches, indicating that M. sinensis would improve P. densiflora seedling establishment. The purpose of this study was to understand the mechanisms by which M. sinensis facilitates the survival of P. densiflora seedlings by considering the soil properties, heavy metal tolerance, and root endophytes in P. densiflora seedlings at the sedimentary site. The sedimentary site, which is a bare ground, contained high concentrations of Fe, indicating that plants should be exposed to Fe and high soil temperature stresses. Measurement of soil temperature revealed that M. sinensis suppressed sharp increases and alternation of soil temperature, resulting in reducing high soil temperature stress in P. densiflora seedlings. To adapt to the Fe stress environment, P. densiflora outside and inside the patches produced Fe detoxicants, including catechin, condensed tannin, and malic acid. Ceratobasidium bicorne and Aquapteridospora sp. were commonly isolated from P. densiflora seedlings outside and inside the patches as root endophytes, which might enhance Fe tolerance in the seedlings. Aquapteridospora sp., which is considered as a dark-septate endophyte (DSE), was also isolated from the roots of M. sinensis, suggesting that M. sinensis might play a source of a root endophyte to P. densiflora seedlings. Ceratobasidium bicorne could be classified into root endophytes showing symbiosis and weak pathogenicity to host plants. Therefore, high soil temperature stress would weaken P. densiflora seedlings, causing root endophytic C. bicorne to appear pathogenic. We suggested that P. densiflora could adapt to the Fe stress environment via producing Fe detoxicants, and M. sinensis would facilitate the establishment of P. densiflora seedlings in the sedimentary site by providing a DSE, Aquapteridospora sp., and maintaining symbiosis of C. bicorne from high soil temperature stress.


Asunto(s)
Endófitos , Pinus , Simbiosis , Plantones , Temperatura , Poaceae , Fiebre , Suelo
4.
Chemosphere ; 313: 137526, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36513194

RESUMEN

Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 µM), Zn2+ (0-200 µM), or diphenyleneiodonium (DPI) chloride (0-100 µM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 µm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.


Asunto(s)
Basidiomycota , Superóxidos , Óxidos/química , Compuestos de Manganeso/química , Oxidación-Reducción , Hongos
5.
Ann Bot ; 131(2): 313-322, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36567503

RESUMEN

BACKGROUND AND AIMS: To date, studies on terrestrial plant ecology and evolution have focused primarily on the trade-off patterns in the allocation of metabolic production to roots and shoots in individual plants and the scaling of whole-plant respiration. However, few empirical studies have investigated the root : shoot ratio by considering scaling whole-plant respiration at various sizes throughout ontogeny. METHODS: Here, using a whole-plant chamber system, we measured the respiration rates, fresh mass and surface area of entire roots and shoots from 377 Fagus crenata individuals, from germinating seeds to mature trees, collected from five different Japanese provenances. Non-linear regression analysis was performed for scaling of root and shoot respiration, fresh mass and surface area with body size. KEY RESULTS: Whole-plant respiration increased rapidly in germinating seeds. In the seedling to mature tree size range, the scaling of whole-plant respiration to whole-plant fresh mass was expressed as a linear trend on the log-log coordinates (exponent slightly greater than 0.75). In the same body size range, root and shoot respiration vs. whole-plant fresh mass were modelled by upward-convex (exponent decreased from 2.35 to 0.638) and downward-convex trends (exponent increased from -0.918 to 0.864), respectively. The root fraction in whole-plant respiration, fresh mass and surface area shifted continuously throughout ontogeny, increasing in smaller seedlings during early growth stages and decreasing in larger trees. CONCLUSIONS: Our results suggest a gradual shift in allocation priorities of metabolic energy from roots in seedlings to shoots in mature trees, providing insights into how roots contribute to shoot and whole-plant growth during ontogeny. The models of root : shoot ratio in relation to whole-plant physiology could be applied in tree growth modelling, and in linking the different levels of ecological phenomena, from individuals to ecosystems.


Asunto(s)
Fagus , Brotes de la Planta , Ecosistema , Plantones/fisiología , Árboles/fisiología , Respiración , Raíces de Plantas
6.
Phytochemistry ; 206: 113547, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481311

RESUMEN

Metallophores are low-molecular-weight compounds capable of chelating heavy metals, which have recently been reported to alleviate heavy metal stress in plants. We isolated two undescribed compounds as Zn-chelating metallophores from the culture broth of the root endophytic Pezicula ericae w12-25, which was collected from a Zn-accumulating plant, Aucuba japonica Thunb. These two compounds were determined to be (3aS,4S,6aR)-3a-hydroxy-3-methylene-4-octyldihydrofuro[3,4-b]furan-2,6(3H,4H)-dione and (3S,3aS,4S,6aR)-3a-hydroxy-3-(hydroxymethyl)-4-octyldihydrofuro[3,4-b]furan-2,6(3H,4H)-dione using spectroscopic methods (HRMS, 1H and 13C NMR, and 2D NMR) and X-ray crystallography, respectively. The two compounds, classified as furofurandiones, were named isoavenaciol and 7-hydroxy-isoavenaciol. After the hydrolysis of the lactone moiety, isoavenaciol would release the carboxyl group to show Zn-chelating activity. Their antifungal activities were confirmed using Cladosporium herbarum (AHU9262).


Asunto(s)
Ascomicetos , Metales Pesados , Zinc , Furanos
7.
Plants (Basel) ; 12(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616165

RESUMEN

Chaetomium cupreum, a root endophyte in Miscanthus sinensis, enhances Al tolerance in M. sinensis by changing aluminum (Al) localization and the production of a siderophore, oosporein, which chelates Al for detoxification. Oosporein has various functions, including insecticidal activity, phytotoxicity, antifungal activity, and a siderophore. In our study, we focused on the detoxification effect of oosporein as a siderophore and on the growth of M. sinensis under Al exposure. In addition, the phytotoxicity of oosporein to M. sinensis was confirmed to compare with those in Lactuca sativa and Oryza sativa as control plants. Under Al stress, oosporein promoted plant growth in M. sinensis seedlings at 10 ppm, which was the same concentration as that detected in M. sinensis roots infected with C. cupreum in our previous study. Oosporein also showed low phytotoxicity to M. sinensis compared with L. sativa at even high concentrations of oosporein. These results suggest that the concentration of oosporein in M. sinensis roots would be maintained at the appropriate concentration to detoxify Al and would promote M. sinensis growth under Al stress, although oosporein would show low phytotoxicity to the natural host plant, M. sinensis, compared with the non-host plant, L. sativa.

8.
PLoS One ; 16(9): e0257690, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34591865

RESUMEN

Aucuba japonica Thunb. is an evergreen understory shrub that grows naturally at a mine site. The mine soil contains high concentrations of heavy metals, and A. japonica appears to maintain detoxification mechanisms against heavy metals in the study site's understory. This study aimed to investigate the heavy metal tolerance mechanisms in A. japonica, considering the possible roles of arbuscular mycorrhizal and root-endophytic fungi. We conducted fieldwork in summer (canopy-foliation season) and winter (canopy-defoliation season) to measure the heavy metal concentrations in leaves, branches, and roots and analyze possible detoxicants in the roots. The infection rates of arbuscular mycorrhizal and root-endophytic fungi were evaluated via microscopic observation, and heavy metal (Zn) localization in A. japonica roots was observed using confocal laser scanning microscopy. Field analysis showed that A. japonica accumulated excessive Zn and produced aucubin and citric acid in the roots in both summer and winter. Zn localization observations clarified that Zn was distributed in thickened epidermal and cortical cell walls, suggesting that the cell walls functioned as Zn deposition sites, reducing Zn toxicity. It was further clarified that Zn was contained within cortical cells, indicating that Zn might be detoxified by aucubin and citric acid. Arbuscular mycorrhizal and root-endophytic fungi within cortical cells adsorbed Zn on fungal cell walls, indicating that these fungi would reduce Zn content within root cells and might alleviate Zn toxicity. Our results indicated that A. japonica would maintain Zn tolerance in both summer and winter via Zn immobilization in the cell walls and production of aucubin and citric acid, and that arbuscular mycorrhizal and root-endophytic fungi might play important roles in the Zn tolerance of A. japonica.


Asunto(s)
Glucósidos Iridoides/metabolismo , Magnoliopsida/crecimiento & desarrollo , Metales Pesados/química , Zinc/química , Adsorción , Biodegradación Ambiental , Pared Celular/química , Ácido Cítrico/química , Japón , Magnoliopsida/metabolismo , Micelio/química , Fotosíntesis
9.
J Plant Res ; 134(5): 989-997, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34115233

RESUMEN

Both Moso bamboo (Phyllostachys pubescens) and tree forests have a large biomass; they are considered to play an important role in ecosystem carbon budgets. The scaling relationship between individual whole-shoot (i.e., aboveground parts) respiration and whole-shoot mass provides a clue for comparing the carbon budgets of Moso bamboo and tree forests. However, nobody has empirically demonstrated whether there is a difference between these forest types in the whole-shoot scaling relationship. We developed whole-shoot chambers and measured the shoot respiration of 58 individual mature bamboo shoots from the smallest to the largest in a Moso bamboo forest, and then compared them with that of 254 tree shoots previously measured. For 30 bamboo shoots, we measured the respiration rate of leaves, branches, and culms. We found that the scaling exponent of whole-shoot respiration of bamboo fitted by a simple power function on a log-log scale was 0.843 (95 % CI 0.797-0.885), which was consistent with that of trees, 0.826 (95 % CI 0.799-0.851), but higher than 3/4, the value typifying the Kleiber's rule. The respiration rates of leaves, branches, and culms at the whole-shoot level were proportional to their mass, revealing a constant mean mass-specific respiration of 1.19, 0.224, and 0.0978 µmol CO2 kg- 1 s- 1, respectively. These constant values suggest common traits of organs among physiologically integrated ramets within a genet. Additionally, the larger the shoots, the smaller the allocation of organ mass to the metabolically active leaves, and the larger the allocation to the metabolically inactive culms. Therefore, these shifts in shoot-mass partitioning to leaves and culms caused a negative metabolic scaling of Moso bamboo shoots. The observed convergent metabolic scaling of Moso bamboo and trees may facilitate comparisons of the ecosystem carbon budgets of Moso bamboo and tree forests.


Asunto(s)
Ecosistema , Árboles , Bosques , Poaceae , Respiración
10.
PLoS One ; 14(2): e0212644, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794662

RESUMEN

Miscanthus sinensis Andersson is a pioneer plant species that grows naturally at mining sites. Miscanthus sinensis can detoxify aluminium (Al) by producing phytosiderophores, such as chlorogenic acid, citric acid, and malic acid, and localizing Al in cell walls. Root-endophytic Chaetomium cupreum, which produces microbial siderophores, enhances Al tolerance in M. sinensis. However, we could not determine whether the siderophores produced by C. cupreum actually enhance Al tolerance in M. sinensis, because the microbial siderophores have not yet been identified in previous research. The purpose of this study was to clarify how C. cupreum chemically increases Al tolerance in M. sinensis under acidic mining site conditions, especially considering siderophores. Using instrumental analyses, the siderophore produced by C. cupreum was identified as oosporein. Comparison of the stability constant between Al and phytosiderophores and oosporein indicated that oosporein could detoxify Al similarly to chlorogenic acid, which shows higher stability constant than citric acid and malic acid. Inoculation test of C. cupreum onto M. sinensis in acidic mine soil showed that C. cupreum promoted seedling growth, and enhanced Al tolerance via inducing chlorogenic-acid production and producing oosporein. These results suggested that C. cupreum could chemically enhance Al tolerance and might promote growth via reducing excessive Al in cell walls, the main site of Al accumulation. In addition, the chemical enhancement of Al tolerance by C. cupreum might be important for M. sinensis to adapt to acidic mining sites.


Asunto(s)
Aluminio/toxicidad , Benzoquinonas/metabolismo , Chaetomium/crecimiento & desarrollo , Ácido Clorogénico/metabolismo , Raíces de Plantas , Poaceae , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Poaceae/crecimiento & desarrollo , Poaceae/microbiología
11.
Mycobiology ; 46(4): 388-395, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637147

RESUMEN

Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.

12.
PLoS One ; 11(12): e0169089, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28030648

RESUMEN

Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.


Asunto(s)
Clethraceae/crecimiento & desarrollo , Endófitos/crecimiento & desarrollo , Alimentos , Intoxicación por Metales Pesados , Metales Pesados/toxicidad , Minería , Raíces de Plantas/crecimiento & desarrollo , Intoxicación/prevención & control , Biodegradación Ambiental , Clethraceae/efectos de los fármacos , Clethraceae/microbiología , Endófitos/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Intoxicación/etiología
13.
J Environ Radioact ; 153: 112-119, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26760221

RESUMEN

We found that root endophytes of (137)Cs accumulator plant produce siderophores, resulting in the desorption of (137)Cs from the contaminated soil collected at Fukushima, Japan. We selected an endemic Japanese deciduous tree, Eleutherococcus sciadophylloides (Franch. et Sav), that accumulates high concentrations of (137)Cs and Mn. Root endophytic bacteria were isolated from E. sciadophylloides and microbial siderophore production was evaluated via chrome azurol S (CAS) Fe and CAS Al assays. Of the 463 strains that we isolated, 107 (23.1%) produced the siderophores. Using eight strains that showed high siderophore production in our assays, we examined desorption of (137)Cs, Mn, Fe and Al by the bacterial culture filtrates from (137)Cs-contaminated soil after decomposing the soil organic matter using hydrogen peroxide. We found (137)Cs and Mn desorption concomitant with Al and Fe desorption, as well as a decrease of pH. We also detected succinic acid, a well-known siderophore, in the bacterial culture filtrates of our two root endophytic bacteria. Our results strongly suggest that the root endophytic bacteria of E. sciadophylloides produce the siderophores that enhance (137)Cs and Mn desorption in the rhizosphere, making the resulting (137)Cs and Mn ions easier for E. sciadophylloides to absorb from the rhizosphere.


Asunto(s)
Bacterias/metabolismo , Radioisótopos de Cesio/metabolismo , Eleutherococcus/metabolismo , Endófitos/metabolismo , Manganeso/metabolismo , Raíces de Plantas/microbiología , Contaminantes Radiactivos del Suelo/metabolismo , Aluminio/metabolismo , Biodegradación Ambiental , Eleutherococcus/microbiología , Hierro/metabolismo , Rizosfera , Sideróforos/metabolismo
14.
Curr Microbiol ; 66(3): 314-21, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23196704

RESUMEN

Our objective was simply to report a sedge species, Carex kobomugi Ohwi that has beneficial bacterial associations under low Fe and P conditions of the Hasaki coast, Japan. C. kobomugi is the dominant species in our study area and grows closest to the sea. C. kobomugi showed higher Fe and P content, while these nutrients were less available under alkaline root-zone soil. Within the roots, mycorrhizal fungal colonization was absent, and endophytic fungal colonization was low. On the contrary, endophytic bacteria (e.g. Bacillus sp., Streptomyces luteogriseus, and Pseudomonas fluorescens) were isolated, which exhibited both siderophore production and inorganic phosphate solubilization under Fe or P limited conditions. Our results suggest that colonization of root tissue by these bacteria contribute to the Fe and P uptakes by C. kobomugi by increasing availability in the soil.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carex (Planta)/microbiología , Hierro/metabolismo , Fósforo/metabolismo , Raíces de Plantas/microbiología , Microbiología del Suelo , Endófitos/aislamiento & purificación , Hongos/aislamiento & purificación , Japón , Estaciones del Año , Simbiosis
15.
Proc Natl Acad Sci U S A ; 107(4): 1447-51, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20080600

RESUMEN

The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.


Asunto(s)
Biomasa , Botánica/métodos , Gases/análisis , Transpiración de Plantas , Plantones/química , Árboles/química , Gases/metabolismo , Plantones/fisiología , Árboles/fisiología
16.
J Chem Ecol ; 35(9): 1077-85, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19774414

RESUMEN

Forest gap dynamics affects light intensity on the forest floor, which in turn may influence defense and survival of tree seedlings. Current-year Fagus crenata seedlings show high mortality under the canopy caused by damping-off. In contrast, they survive pathogen attacks in gaps. However, defense mechanisms against damping-off have not been fully understood. In order to determine the resistance factors that affect mortality in current-year seedlings, we compared seedling survival and chemical and histological characteristics of the hypocotyls of seedlings from closed-stand and forest-edge plots. Damping-off occurred in the current-year seedlings mainly from the end of June to July; survival rate of the seedlings was higher in the forest-edge plot than in the closed-stand plot. By performing an inoculation test on the seedling hypocotyls, we identified Colletotrichum dematium and Cylindrocarpon sp. as the causative pathogens under low illumination only. In the beginning of July, only seedling hypocotyls from the forest-edge plot exhibited periderm formation. From mid-June to July, seedling hypocotyls from the forest-edge plot accumulated approximately twice the amount of total phenols as those accumulated by seedling hypocotyls from the closed-stand plot. The ethyl acetate phase of methanol extracts of hypocotyls showed antifungal activity. We conclude that seedlings from the forest-edge plot may resist pathogenic attack via periderm formation and increased phenol synthesis. Plant defense mechanisms that are controlled by light intensity may be important for promoting seedling regeneration in forest gap dynamics.


Asunto(s)
Fagus/química , Hongos/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Fagus/microbiología , Hipocótilo/química , Hipocótilo/microbiología , Luz , Fenoles/aislamiento & purificación , Fenoles/farmacología , Estaciones del Año , Plantones/química , Plantones/microbiología , Árboles
17.
J Chem Ecol ; 33(12): 2254-65, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18026796

RESUMEN

Hinoki-asunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino) is a tree endemic in Japan whose seeds produce several terpenoids. We hypothesized that antifungal compounds in seeds might select for fungi on the root surfaces of T. dolabrata var. hondai seedlings. We examined seed and soil fungi, their sensitivity to methanol extracts of the seeds, the fungi on root surfaces of seedlings grown in Kanuma pumice (a model mineral soil) and nursery soil, and the frequency at which each fungus was detected on the seedling root surface. We calculated correlation coefficients between fungal detection frequency on root surfaces and fungal sensitivity to seed extracts. We also isolated from the seeds the antifungal compound totarol that selected for fungi on root surfaces. Species of Alternaria, Cladosporium, Pestalotiopsis, and Phomopsis were the most frequently isolated fungi from seeds. Mortierella and Mucor were the dominant fungi isolated from Kanuma pumice, whereas Umbelopsis and Trichoderma were the main fungi isolated from nursery soil. Alternaria, Cladosporium, Mortierella, Pestalotiopsis, and Phomopsis were the dominant fungi isolated from root surfaces of seedlings grown in Kanuma pumice, and Alternaria, Cladosporium, Pestalotiopsis, Phomopsis, and Trichoderma were the main root-surface fungi isolated from seedlings grown in nursery soil. The fungal detection frequencies on root surfaces in both soils were significantly and negatively correlated with fungal sensitivity to the seed extract. A similar correlation was found between the fungal detection frequency on root surfaces and fungal sensitivity to totarol. We conclude that totarol is one factor that selects for fungi on root surfaces of T. dolabrata var. hondai in the early growth stage.


Asunto(s)
Antifúngicos/farmacología , Diterpenos/farmacología , Hongos/efectos de los fármacos , Raíces de Plantas/microbiología , Semillas/química , Árboles/química , Abietanos , Antifúngicos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Hongos/clasificación , Árboles/embriología
18.
J Chem Ecol ; 31(4): 805-17, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16124252

RESUMEN

The potential protection of Picea glehnii seedlings from damping-off by seed-epiphytic Penicillium species was investigated. We studied the chemical response of seed-epiphytic Penicillium species (Pen. cyaneum, Pen. damascenum, and Pen. implicatum) to Pythium vexans, a damping-off fungus, in vitro. Penicillium species were cultured singly or cocultured with Pyt. vexans for 14 or 18 d, and mycelial growth, pH of culture filtrate, antifungal activity of the culture filtrate against Pyt. vexans, and the amount of antifungal compound produced by each Penicillium species, were examined. The filtrate of both the single culture of Penicillium and the coculture of Penicillium and Pyt. vexans showed antifungal activity against Pyt. vexans. In a coculture with Pyt. vexans, Pen. cyaneum produced an antifungal compound (patulin) as in the single culture. Pen. damascenum cocultured with Pyt. vexans produced an antifungal compound (citrinin), as it did in the single culture and in larger amounts on day 10. Pen. implicatum produced two antifungal compounds, frequentin and palitantin, and the ratio of frequentin (with higher antifungal activity than palitantin) to palitantin was higher in the coculture with Pyt. vexans than in the single culture. Our results indicate that these Penicillium species have the ability to produce antifungal compounds and to keep anti-fungal activity under competitive condition with Pyt. vexans. The chemical response of these Penicillium species to Pyt. vexans may contribute to protect P. glehnii seedlings from damage by Pyt. vexans.


Asunto(s)
Antifúngicos/farmacología , Penicillium/metabolismo , Pythium/fisiología , Medios de Cultivo , Ciclohexanoles/farmacología , Ciclohexanonas/farmacología , Proteínas Fúngicas/fisiología , Patulina/farmacología , Penicilinas/farmacología , Penicillium/clasificación , Pythium/química , Microbiología del Suelo , Factores de Tiempo
19.
Mycorrhiza ; 15(1): 17-23, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14716537

RESUMEN

Ectomycorrhizal fungi can produce antifungal compounds in vitro as well as in symbiosis with the host plant that can reduce root diseases. The objective of this study was to isolate antifungal compounds from culture filtrate of Paxillus sp. 60/92, which can form mycorrhizas with Picea glehnii seedlings. Culture filtrate of Paxillus sp. 60/92 showed antifungal activity against Pythium vexans at pH 3-4 but not at pH 5-10, although sterile MMN-b liquid medium (pH 3-10) did not show antifungal activity. Upon separation of antifungal compounds in the culture filtrate, antifungal activity was detected in the organic acid and water-soluble phenolics fractions adjusted to pH 3. Although antifungal activity of individual fractions was lower than that of the culture filtrate, a mixture of these fractions showed antifungal activity similar to that of the culture filtrate. Furthermore, antifungal activity of oxalic acid, which is known to be produced by Paxillus involutus, was increased by mixing with the water-soluble phenolic fraction. Our findings indicate that Paxillus sp. 60/92 produces organic acids and water-soluble phenolics that together show antifungal activity at pH 3-4 against P. vexans.


Asunto(s)
Basidiomycota/metabolismo , Micorrizas/metabolismo , Pythium/fisiología , Antifúngicos/metabolismo , Basidiomycota/fisiología , Concentración de Iones de Hidrógeno , Micorrizas/fisiología , Fenoles/metabolismo , Picea/microbiología , Raíces de Plantas/microbiología
20.
New Phytol ; 152(3): 521-531, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33862982

RESUMEN

• In a coinoculation test of seed-epiphytic Penicillium species and pathogenic Pythium vexans to Picea glehnii seedlings, the number of surviving seedlings which were inoculated with P. vexans 5 d after preinoculation with Penicillium damascenum PGS-O7 increased compared with those inoculated with P. vexans alone. • The phytotoxicity of antifungal compounds to P. glehnii seeds and seedlings was assessed in growth experiments. Production of these compounds was quantitatively analysed in the rhizosphere of the host seedlings using chromatography techniques. • Dense mycelial growth of P. damascenum was observed microscopically around the roots of the inoculated seedlings. Furthermore, the antifungal and phytotoxic compound citrinin produced by P. damascenum was detected as a component released around the roots of the normally growing fungus-inoculated seedlings. • We propose two possible mechanisms for the protection of P. glehnii seedlings by P. damascenum from P. vexans; first, chemical protection by an antibiotic agent, citrinin produced by P. damascenum, and second, the occupation of the space around the P. glehnii roots by the P. damascenum mycelia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...